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PREFACE

HIS is a new book, not a translation from Sternberg’s
German book, Potentialtheorie in the “Goeschen'’ col-
lection. A few chapters of the latter book have been used
but these have been partly modified. A\

\AH

The book is designed chiefly for the use of students;, a:nd’

teachers. The research worker will perhaps find some helpful
suggestions, as well.

The student reading this book is presumei\to ‘have a
thorough knowledge of differential and integraltelculus. In
some sections also an acquaintance with the most elementary
theorems of the theory of analytlc funct&o;{sand of the theory
of linear differential equations is desirable}

The text offers a short mtroductmn o vector analysis and
a presentation of the Fredholm theory of integral equations.
The theory of spherical harmomcs is also briefly explained.
Consistent use of vector analysns is a characteristic feature
of the book. A

Among several books on potential theory we mention in
particular 0. D. Ke‘H&gs Foundations of Potential Theory
{1929) and G. C, Evans' The Logarithmic Polential, Discon-

tinuous Dirichlet<and Newmann Problems (1927), American .

Mathematmal@bmety Colloquium Publications, vol. VI.

The authors hope that the present text fills a gap, by
leading, the student reader from the elements of potential
theory to the solutions of boundary value problems in a simple
Qd easily understandable way.

On’ account of space limitations it was not possible to
deal with certain important topics. The methods of H.
Poincaré, D, Hilbert, R. Courant, and other authors, for
solving the boundary value problems under very general

vii
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conditions concerning the boundary of the regions, could not
be treated, nor could the problems involving discontinuous
boundary functions be discussed. In regard to this we refer
the reader in particular to the paper of N. Wiener in the
Transactions of the American Mathematical Sociely, vol. XXY
(1923). Regarding the small section ‘‘Dircct Methods of ‘the
Calculus of Variations” the reader would do well to ex‘tend
his knowledge of this matter by studying R, Courant's
chapter XX, ‘Variationsrechnung und Randwe rr;pr@bleme in
Riemann-Weber Die Dzﬁ'eren!mlg!etckungen der WMechanik and
Physik, vol. I (1925).

The authors wish to thank Dr, a(son Mark for his
valuable assistance in the correction @fproofs. They would
appreciate any suggestions for 1mpx‘0§1ng the text.

")
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WOLFGANG ]. STERNBERG
Xy TurNER L. SMITH

Cornell University, N
Carnegie Institute of Fechnology,

October, 1943.
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INTRODUCTION
VECTORS AND SCALARS

Since the use of vector analysis is very convenient in the
study of potential theory, we will first study the ideas of
scalars and vectors as they appear in physics and the notatiof )
and simpler rules of vector operat:ons and vector calculus)

A scalar is a quantity which is measured by a. smgle
number. Some examples are density, temperature/electrical
charge density, viscosity of a fluid, etc. A scalat\may have
a constant value, or its value may vary froni\point to point
in space and perhaps with the time. = 0

A veckor is a quantity which has magmtude and direction,
as force, velocity, and acceleration. MAvvector can be geo-
metrlcally represented by an arrow\or directed line-segment
in the direction of the vector, havmg a length (measured in
centimetres, for example) equal to the number which repre-
sents (in any units) the ma.gmtude of the vector.!

The orthogonal projeczgon of a vector on any direction is
called the component of\the vector in this direction; this may
be positive or negan% A vector @ is evidently determined
by its components &1, ¢s, 8, in the direction of the x, y, £ axes
of a rect.angula? coordinate system. The vector itself is
geometricallyy }epresented by the interior diagonal of a rect-
angular hok-whose edges are the components.

The\ magmtude of a vector is

JOS ) ¢ =|a] = Vai+ od+of;
thds a letter in ordinary type represents the magnitude of the
vector which is represented by the same letter in bold-face
type.
10n account of their physical meaning, scalars and vectors are inde-
pendent of the choice of coordinate axes,
1



. tlie"'equation

2 VECTORS AND SCALANS In1e,

The direction of the vector @ is indicated by its direction
costnes:
(2) cos(a, x) = a,/a, cos(a, ¥) = ar/a, cos{a, ) = oy/a,

the cosines of the angles which it makes with the axis di-
rections.

The component of @ in any direction n is
(3) a.= a cos(a, n), .\\\

and hence has its maximum value when 1 has the 5ame o direc-
tion as g, )

7%
3

From analytic geometry, the formula for tl,IL ‘dosine of the
angle between the directions of @ and n js¥

(4)  cos(a, n) = cos(a, x) cos(n, x}
<+ cos(a, ¥) cos(n, y)-Kch(a z) cos(n, 2).

If the two directions are perpendleular this expression van-
ishes. The application of (4) te [8) gives

(5) du= ¢ [cos(e, ac) tos(n, )+ .. ],
and from the formulas in (2') we get
(6) an= a; cos(n{%)+ as cos(n, y)+ as cos(n, z).

According to (6) the¢omponent a, in an arbitrary direction f
is represented linéatly and homogeneously by the three direc-
tion cosines cos(®, x), cos(sn, ¥), cos(n, 2) of this direction, and
the compoients a1, gz, ay in the directions of the axes are
coefﬁment& “lndependent of n. This representation of the
mmp@ent @n is obviously invariant under a transformation
of thevaxes. That means: If g, 4, ¢ are a new system of axes,

an= o cos(n, £+ a, cos(n, ) + a; cos(n, §),

’ analogous to (6), holds true.

On the basis of (8) the concept of vector can be defined in
another, more abstract but nevertheless very important, way-
By (6) a number @, is associated with every direction n of the
space. The vector @ is then defined to be the association of
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the numbers a, with the directions #n2. The direction of the
vector is defined to be that direction in which a, gets its

maximum, so that the direction cosines of this direction are -

proportional to 4y, s, 43, and the magnitude of the vector is
defined to be the value of this maximum. It is obvious that
direction and magnitude are again determined by (2) and (1)
respectively. The reader should prove it!

The vector —a is defined to be the vector having the samé‘ b,
magnitude as @ but the direction opposite to that of a; Gts -

components are therefore —ga,, —as, —as. The null- vectar 0
is a vector whose three components are zero; its ma{mtude is
therefore zero and its direction indeterminate.
Twe vectors are said to be egual if and onlyif theu* corres-
ponding components are equal respectwel)?‘s ‘a = b when
ai=b (=12 8). O
The sum or resultant of two vectors,()"

%) c=a+ Q.::.»::.

is defined as the vector represesited by the diagonal of the
paralielogram having @ and\b as sides. The sum is inde-
pendent of choice of axesyand is commutative. The sum has
the components a;+ b a2+ b1, az+ bs, so that the compo-
nents are added algebraically. From (7) it follows that
b = ¢ — @, by uding the definition of —a and the interpre-
tation that € »'\@means ¢ +(—a)., There are no difficulties

F16.1

Q!
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4 VECTORS AND SCALARS INTR.

in forming the sum of three vectors. It is easily seen that
the associative law holds

a+b+cy=(@+ b+ c,

so that the parentheses may be omitted and the sum written™\
simply @ + b + ¢. Of course the same statement holds, for
more than three vectors. )

If m is a scalar, then ma is a vector of magmtude 1mla and
in the same direction as @ or in the c»pposm: direction,

according as m is positive or negative; 1ts cqmponents are
ma,, may, ma,. It is easily seen that

m(a + b)=ma + mb\\"

S\
The dot product (scalar product. or innmer product) is de-
fined by

(8) ab = g’ eos(a, B)

and is evidently independérit of the choice of coordinate axes.

By the use of (2) and 44), it is seen that in terms of the rect-
angular components;

N\
(9) ) ab = Glb],"“" agb3+ ng;

The dot product is evidently commutative, @b = bea from

its deﬁmﬁen It can be easily shown to be distributive when
comb;qed with addition, so

(10) a(b + ¢)= ab + ac.

Q) The dot product is equal to the product of the magnitude of @
by the component of b in the direction of @. The dot product
of a vector by itself, written simply a2, is equal to a+*+a4* +as®
The vanishing of the dot product is the condition for ortho-
gonality of two vectors.

In vector analysis, it is frequently convenient to make use
of the three unit vectors 4, §, k in the direction of the three
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Fic. 2 ‘

axes. Then the vector @ can be written as the, s:.‘rm of three
component vectors in the axis directions,
. a = aid + asf + ask, \\“
It is frequently convenient also to use, th} following notation
for a vector in terms of its components
a = (a,, an aa)

The cross product (m:tar pf'oduct) ¢ of two vectors @ and b,

(11) or'=\g X b;
\

is a vector of magnig\‘@eéqual to the area ab sin (a,b) of the
parallelogram formed“on @ and b, and having a direction
perpendicular to their plane such that @, b, ¢ form a right-hand
axis system, TH4t is, a rotation in their plane which carries
the dmactloQ}f a into that of b (rotation through an angle
less than 180°) will appear to an ohserver facing in the direc-
tion of e\to be a clock-wise or right-hand rotation (Fig. 3).

FOT the cross product, the commutative law does not hold,
ch from the definition it is evident that

axXb=—-bXa
It is not difficult to prove that the distributive law is valid:
e Xb+e)=axb+aXe
We will assume that the rectangular coordinate system used
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Ine,
111
i
$
: b
Oy
o\
« \J
c-axh A\
A\
Fic. 3 A
w7

3
is right-handed; then it is easily seen thak}t terms of com-
ponents, N

(1) a X b = (aby—asbs) i+{(zds> \& 10) 7+ (a:d2—a2by) k
= (ashs ~aasbs, ﬂ-abz"'alga' arbs—asb)

i j kg
a (47 ﬁs
bl bg *2’3
To prove this we nota}h\at

\ (\J ,
iXj=k*X\N FiXk=i ExXi=j
!'Xl'——f‘.ot; I XJi=0 ExXEk=0
Therefore A

aXb = (erd + asj + ask) X (bif + baj + bsk)
=§&152)k —(aibs)j —(ab)k +{(abs)i +(ash1)f —(@aba)d
1n at;c}ardance with (12).

(OThe gradient, divergence, and curl of a vector witl be
\'}eﬁned later as needed.



CHAPTER 1
THE NEWTONIAN LAW OF GRAVITY

Art. 1. The Newtonian Law ~

The Newtonian law of gravity states: fwe concentrated,
masses ms and ma located at the poinis Py and Py exert on edch
other a force of attraction proportional to the product of their
masses and inversely proportional io the square of theldistance
between them. The divection of the force is along th Jine joining
the masses. 1f we let » and F be the distance P}P; and the
magnitude of the force respectively, then N :

A

F =T, Y

. "

where & is called the gravitational\ constant. The force =

exerts on ms has the direction B;fi, while the force acting on
w1, has the direction PyPa. '

The magnitude of the- gravitational constant depends on
the units of mass, dispapce and force selected. In the c.g.s.
system with the fosgi( measured in dynes,

A, k=666 X107 .
Hence two goinf—hlasses' of one gram each at a centimetre
distance apz;!{t'alttract each other with a force of 0.000,000 ,066,6
dyres. \ )"

It 45 customary to simplify the equations of potential
theén? by using a unit of force such that E = 1, so that

e &

\‘; L Hanty

X 3

3

This unit of force is called the gravitational unit of force. It
is evidently equal to 6.66 X 107° dynes, and hence is very
small. Measuring force in this unit we have F =1 when
my=me=1and 7 = 1. We will mostly use this unit in this
book (but not in the following example).

7
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Example: to calculate the mean density of the earth.
The length of the equator is 40,000 km. or 4 X 10% cm.; the
acceleration of gravity is 981 cm/scc? on the earth's surface.
In the law of force, let m,= M be the mass of the earth
concentrated in its centre (see Article 3) and et m, be 1 gnl\

at the earth's surface. Then F = %——};{whcrc E = 6.66 'X:m"
4 X 10° ¢ ),

and r = ; moreover, F=098] dynt:S. 40 'L'}}‘L’l\t 981 =
T K

EM 2 Q.

= o M= 98}:’ . If we let g be the meanndensity of the

earth, then M = 4—1’:;2 . Equating the twd expressions for M,
RY

= — L =

é55 approx.
In electrostatics,m{ﬁ)ulomb’s Law has the same form as

Newton’s gravitational law. Two point-charges of electricity
e1and ¢; at the,points Py and P, at a distance r apart exert on
each other aforde
N\ <
£ ) &8
2.\ _‘g_’
:”\s. r
\,\\ "
The force is along the line P, P;; like charges repel, and charges
Here it is customary to use the dyne
as the unit of force, and to select the unit of electrical charge
$0 that the constant of proportionality is unity in Coulomb's
Law. That quantity of electricity which exerts a force of one
dyne on an equal quantity of electricity at a distance of one

centimetre is called an electrostatic unil {c.g.s.es.u.) of elec
iricity,




Art, 2 Force FIELD ' 9

Art, 2. The Force Field
The force which would act on a unit mass held at any
point in space is called the value of the force field at that point,
We will first study the force field due to a concentrated mass.
Let the mass m be concentrated at the point Q:(x1, ¥1, 21),
and consider the force which this exerts on a unit mass at
P:(x, v, 2). Let the vector from P to Q be denoted by r, O\
r=(@—x}i+{n—0N7+E-9k, O
then the force acting on the unit mass at P is in the gii‘rgétion

. . . r ’,

of # or in the direction of the unit vector— ; so thg& the force

¥ &N

vector is equal to mr , Or
oy

F=m ¥

) ¢ 3

3 A\N

This vector is the value of the fm;c;g' ﬁéld at P due to the mass m
concentrated at ). This field hias the components

¥ = m{x —-x)’ It'\= mkyts—y)’ 7 = m(z — 2)

r +) r Ne
- \ )
When several masses mi, #s, . ... mn are located at the

points @y, Qs, (7, Oy respectively, whete @, is (xa, ¥, 2.), they
produce a force field or force on a unit mass at P:(x, y, £) which
is the resultant of the forces exerted separately by the indi-
vidual'\ Ses.  The force due to the mass m, is
AN ' F, = I

\ W 3
\ 3 TS
where r,=(x,— x, y,— 9, z,— 2z). Adding these together, the
total field at P is '
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with components

X=é m.(x.-x)' Ya}i m.(y.-«y)_l 7

=3 Mt =g
=] ?",a

-~ 3
sml r," i=1 E

We consider next a continuous distribution of mass, which
occupies a bounded region V. Let the element of volisie

aV = dtdndt at the point Q:(&, n, §) of V contain the mass'im,

Then the field of force at P:(x, v, 2) due to dm is O
d. N
Lail‘ r = (E Xy -, f - :?}):.',
r ..,;"

It is at first assumed that P is outside the volume V. The
total force at Pis ::\\“

-l &
(] J J 6= 0m, | '[ ;Snf::;-;é')dm’ I J &= 2am)

4

If p = plg, 7, ) i{&:c:fle density, then dm = pdV and

B\ rodV
F= J-.” Ea
Ve, v

The densjti»is a scalar function which we shall assume to be
bounded)and integrable.

J e mass is distributed over a surface (plane or curved)
\\Q’Ehr the surface density ¢, the force is

/AN

QO F = JJ redS.

¥

5

where 4S5 is the element of area of the surface S. Finally if

the mass is on a curve Cwith a linear density v, the force field
it produces is
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F =Jr7ds’

?

where ds is the element of arc of the curve C.

The field F due to a space distribution of mass has a -
meaning when P is inside the region V as well as when P is O\

an exterior point. The integral A
e

7 £\

F - JJ'[ rpd.i \ ’\“'
ré T
v AN\ 3

is an improper integral when P is inside V,.because » » 0 as
Q> P; but if we transform this integral\bs introducing
spherical coordinates for Q with P as origith ‘then

dV = rsin ¢ dr df d¢, and (£ —~x) ¥ sin 0 cos o,

so that X = JJ-jp sin® goj&qb dr d6 de¢

. i .'{:"; _
which is not an improper.infegral. Similarly it can be seen
that the integrals for K\Hnd Z become proper integrals in the
new ceordinates. ence F exists and 15 defined by these
integrals at 1nter10r§nnts of V.

Art. 3. Exgj\n[ﬁes and Exercises .

1. A spherical shell or surface of radius g, having a surface
mass distribution of density 0. The distribution is supposed
.to beshomogeneous, so that & = constant.
~(let the point P be taken on the positive z-axis. On account
{ the symmetry, ¥ and X are zero. - Show that
_bmete M fors>a,
Z=7 7 z?
0 for z <a.
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The force field at exterior points is therefore the same as if the
mass were concentrated at the centre. (From example 6,
below, Z=—2r¢ when z = ¢.)

2. A homogeneous spherical solid of uniform density p and

7

radius a. .
Take P on the z-axis above the sphere, and show that
N\
7 = — 4xa’p - _fl_{ ~\ \ ."
32 2 >

. AV i :
The solid sphere therefore attracts at exterior points as if its
mass were concentrated at the centre. ) ;

Show that this is also true if the demsity p is a function of
the distance from the centre of the'\sphere.

2a. A hollow thick spherical shell or solid filling the space
between two concentric gpﬁé‘res, with density constant or a
function of the distance from the centre. Show that the force
is zero for a point ingide the inner sphere, and is the same as
if the mass were cofcentrated at the centre for a point outside
the outer sphere.

3. Homdgeneous straight wire 4 B of length [ and density 7.
Take)the wire as the s-axis with A at the origin and B at
2z = {\ii\Take P on the g-axis; then evidently X = ¥ = 0.
A\ Uy
.EO%Z)L Z=J(§—?Ldf’wherer=!;’—gl=z—-f;
e\ ¥ 0 ¥
N

Z=_7JI(§_3)df=_ yi .
0 (f —2p z(z — 1)

' 1
(f —a)ydt i
F 0, Z = = .
ore < .[0 7? +z(z—-l)

On approaching the end-points s = 0 or z = {, Z becomes
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infinite. When Pisan interior point {0 < z < I), we can take
F as the mid-point for a small segment of wire; by symmetry
this exerts no force on P. But P is an exterior point for the
remainder of the wire, so that the total force can be found.

. Infinite homogeneous wire. \ ¢

Let the wire lie along the z-axis, and take P on the posmve
x-axis. Then by symmetry Y=2=0,and A

A
| %

X -——J M, where cos e =j,r2---.fx2"+§'2,
-t r? ¥ \V

_ TxJ‘oo g . ':'.\\':
- (x2-|- g-s)a/z ‘\ @

. J“” du =§’

= » (——-'—-——-'-——1 + “2)3/2', —

_ 27 & .;‘.

= - N

The force is therefgreiri;}versely proportional to the distance
from the wire, 'I:h\?s»\can be used as an interpretation of the
logarithmic poteatial (Chapter 2, Article 3).
¥/
5. Horgoée“ﬁeous disk of radius a.

Let.{ﬁe’:disk lie in the xy-plane with centre at the origin,
and take P on the z-axis. By symmetry, X = ¥ =0, and

or
2= [[$=28 Lot
5

a\4

\‘:

T ”L CEEET

By introducing polar coordinates ¢ = p cos 8, 4 = p sin ¥,
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7= _oz'r’:"'c pdpdﬂ

0 (z: + pz)aa’:

- 2102{-1-1—1 - \/a_‘?:}

2xoz
— 270 4+ for 2> 0, A ¢
Vi + 22 \ N,
B 2roz D
270 4+ ——for z < 0. N
'\/ a! + z'j ";2' 2
We find from this that \
Zo=lim Z = —2x0; Z_= lim Z\= 270,
M 1 +0 1> v.“&é'
Also Z(0) = 0, so that \‘
Z(0) = ‘____*Zf *2' 3:

X
V 3

6. Homogeneous spheru:al surface; to calculate F for P
on the surface.

Let the radius b&‘&, centre at the origin, and let o be the
surface density. \Yake P at (0, 0, a); then the tangential

components X vanish by symmetry, and the normal
component, ;"

AN . g’ —_ 1
N Z = o'.[ -
O\Y §

‘ This'%iegral is improper, but is convergent and can easily be
. ;e\x?a.luated.' By using spherical coordinates, it becomes

m\./

\‘; 7z =a'r'r' (¢ cos & — a) a?sin 8d¢de
0Jo [e?sin?f 4 a2(1 — cos §)2]%2
- 21!_0‘[' sin 8dd
02¥%(1 - cosf)V?
= —2r0.

Hence the force is independent of 4. From example 1, w¢
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find that for the forces just outside and just inside the surface
o= —d4mo, Z_=1,

80 that Z{P) = .

7. To find F in the interior of a homogeneous solid sphere.

Let p be the density, a the radius, and S the surfaw,(léif'
OP = R be the vector from the centre to the poth mslde
the sphere, ~

Let Sy and .Sy be concentric sphencal surfacggmth radii
a1 > R and a;< R. That portion of the sphere’between S;
S exerts no force at P (Example 2a}. The)mass inside the

O\
surface Sy exerts a force (Example 2) \

F = _ 4dmadp R
3R R
By letting ¢1+ R and a2 -)-R itrs seen that
Ee_t7pR
~\ 3

The force is therefoké;ji'oportional to the distance R from the
centre, This method can also be used when p is not a con-
stant but var;gs swith the distance from the centre of the
sphere. ',\‘“

Art, 4, J%rce Fields, Linesof Force. Vector Fields, Velo-
AN city Fields

3 a force is defined at every point in space or in a portien

f space, the space possesses a physical property and is called
a field of force, in accordance with Art. 2. For example, a
space distribution of mass would exert on a unit point-mass
at any point P a force, which is the value at P of the force field
caused by the distribution of mass. Similarly, masses distri-
buted over surfaces or curves produce force fields. The force
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field produced by a point-mass is not defined at the point
itsclf, because the force becomes infinite as this point is
approached.

A line of force is a curve which has, at cach of its points,
the same direction as the force at that point.  The lines @
force due to a point-mass are the straight lines through‘(hat
point where the mass is located: and the lines of foyee dué to
a homogeneous spherical mass are the straight ]lﬁ(}s through
the centre of the sphere, In general the hl‘.{:‘b of force are,
according to their definition, the eohmnnaxﬁ a system of
ordinary differential equations,

dx _dy _dz e N\

where (X, Y, Z) is the force field and (dx, dy, dz) isa dlsplace
ment along the line of farce. ,,,’fI‘wo arbitrary constants enter
in the integration; hence th@lines of force form a two-pata-
meter family of curves. 3%

P4\

Examples z"\\
1. Fora mass\;\)omt m located at Q (taken as the origin);
& OF = —-i:, where r = (x, ¥, 2).
O .
O3
Henc&’:\'“ dx _dy _dz
r vy oz

a.re ‘the differential equations of the lines of force, with the

\m Selutions y = ax,% = bx. These equations represent the lines

“of force, which are straight lines through the origin.

2. Let the field be F = {x, ¥, —2). Then
dx _dy ds

* 3 =z
which have the solution y = agx, zx = b.
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A point where F =0 or X =¥ =2 = (0 is a point of
equilibrium. Such a point is in general a singular point for
the differentiat equations of the lines of {orce.

If an arbitrary vector is defined at each point in space or
in a portion of space, this space is calied a veclor field. The
lines corresponding to the lines of force are the field-lines.

For example, consider the motion of a fluid. Let (x, 3, g

be the coordinates of a particle at the time ¢, then the mqti@ﬁ'ﬁ
is associated with the differential equations >

dr Y
=9 X, & t %4 2
T (%, 3, 21) RS

where v is the velocity of a particle. The fieidy is.a velocity
field. The velocity in general depends or;:jbh\e time ¢ as well
as on the place (x,v,2). When the Velqcﬁky'is independent of
¢ explicitly, the flow is called stationary) '
The solution of the above diﬁg;é:glti'al equation gives
r =~ 6(t a8 or
% = &t a,b,c), % ="-;b2(£;‘a,b,c), z = ¢s{l,a, b, c).
A particular choice of numierical values for g, &, ¢ corresponds
to a particular particle‘;{%’t& above equation r =¢{?, a, b, c)
therefore representg\l\'le paths of particular particles. The
parameters may,.be’so chosen that they are the coordin-
ates of the partiele’in question at the beginning of the motion,
att = 0. “%"designate them in this case by x4, ¥o, %0; then
.\' ' r = ¢t ro).
Equatib:ns of motion in this form are known as Lagrange
equations. :
A field-line, which is here called a flow-line or stream-line, is
by definition such that at each point of the line (at some parti-
cular instant) the line has the direction of the velotity at that
point. The differential equations of the stream-lines are
therefore

A\
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dx _ dy _ dz
1’1(-‘5, Y2 't) ﬂ:(x, ¥ 5 !) lfs(x. ¥ 5 't)
where ¢ 1s considered constant.  On the other hand, from the

vector cquation above it follows that the paths of particles
arc the solutions of

N

d¥=¢d_3;=€z = df A o

o vz U R,
where ¢ is the independent variable. Thus it is agﬁa\r’ent that
the paths of particles are in general different {rp'rﬁ’%hc stream-
tines. They agree if and only if the ratios ,49:: v; are inde-
pendent of the time. In particular, wheb(is independent of
¢ or ihe flow is stationary, the stream-liggs' are the same as the

actual paths of the particles. \ O

Examples O ‘
1. v = (xt, 3, 5). oSO8
This velocity field h’&‘s";‘tﬁc paths of particles

(x, 0 2) = (6.6, cae!, cae?),
and the stream.-li,néf;\
X x =ay, vy ==z

at any ﬁxec\l*in’étant { = constant.

2, 4= (5,4, 0).

RS e trajectories of the particles are the parabolas
x=54+c

Z = €3,
while the flow-lines at any instant are the straight lines

4
=—x-a,
775

gz = b



CHAPTER 11

CONCEPT OF POTENTIAL

Art. 1. Work. Potential Gradient of a Scalar N\

7'\

We will now show how the idea of potential anses in
mechanlcs The motion of a mass-particle in a f&fce field

= (X ¥, Z) is a simple example. We will assume‘ that the
ﬁeid is a continuous function of position in space, and for
simplicity that the mass-particle has unit m sa, By Newton’s
second law of motion, the motion is gove@

F=¢,or X=x"YV= y”,’Z*-z,

where the primes mean differentiation with respect to time.
Here r =(x, v, 2) is the vector f'.aom the origin to the particle.
Let # be the velocity of the pax;tlcle Then

d
3 v2=\r ot = Foy;
but \\ '
ey JOEW) =4 =%+

is the kinetic eftergy of the particle. Itisa scalar independent
of the coordxhate system. From the above equations

“\ dE F- ar.
N dt ds

¢

a.nd ‘by integration with respect to the time,
}'2) E(ty— E(lg) = J Fedr = J- (Xdx + Ydy + Zdz),
Py Py

where the particle moves along a certain curve from Py to P
in the time from # to £. {We consider here, and later, curves
which possess a continuously turning tangent except perhaps
for a finite number of points.) The expression on the left of

19
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(2) is the increase in kinetic energy of the unit mass-particle s
from to to &. By the definition of the dot-product, the inte-
grand on the right side of (2) is Fodr = Fcos #ds = Fds, the

element of work which the force performs on the portion d,s\_i
I)
of the path, The line integral U =J. Fedr is therefore the
: e ¢\
total work performed during the motion. O
The work is in general dependent not merely,on the posi-
tion of the points P and P, but also on the pathief the particle -
betweenthem. However, the work is t'mz‘epcnﬁk\m of the path L
used, if the integral has the same valueNof all paths, from
P, to P, which can be deformed contimﬁsﬁsly into each other
without leaving the force ficld. =\

We now impose the condition&hdt the integral

3) }-{.E-éz} -0

$oed
for any closed path € which can be shrunk to a point withm}t .
leaving the field. ACfield which satisfies this condition 18

called conservatives \Then the integral U for any two points

of the field is i:&lependent of the path between them,! and
conversely property (3) follows from the property of inde- |
pendence ofy the value of the integral on the path between -

end-pqiqi\s. When we consider P, as fixed and P as variable,
4 3 P

the.q'%e:gral U= J Fedr represents a function of P (naturallY
£, P

L}
choice of coordinate system). This scalar

P
(4) UP)= J; Fedr

is called the potentigl of the field F. We will now ?Llways
assume that the field is a simply-connected region, thatis, that

1The integral has the same value at least for any pair of paths, "-’h‘_’se
combination is a closed curve which can be continuously shrunk to a point
without leaving the field,
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every closed curve lying in the field can be continuously shrunk
to a point without leaving the field. (For example, a cube,
sphere or cylinder, a spher¢ with one or more inner points
removed, or the region between two concentric spherical
surfaces is simply-connected, but a torus is not a simply-
connected region.)

For a simply-connected region, the potential U (with P\
fixed) is a single-valued function of P, because the integral (&) ™
has the same value for every curve of the field joining these
points. If we take a different fixed point P, insteadf ot} P,
then B 7y B ..,‘\g
UP)= LF-dr = J- Fedr —1—J Fedrpv

1

Py P \
AN Po

so that U, and U only differ by a const'axﬁ,:.\néamely J- Fedr,
N Py

The potential U is therefore uniquely detérmined by the field
F =(X, ¥, Z) except for an arbitrafysadditive constant.
From (4), by the rules of ca}ipﬁlhs, we get
WU _y Wy W g
e pr {0y a2

or more briefly &\
(5) \ \} = grad U.

(See the end of+this article for a discussion of the gradient as
used in vectoramalysis.) The derivatives of the potential in
the axis directions are therefore the foree components in these
directiongy hence, conversely, the field is determined by its
potential.” Similarly, the directional derivative of the poten-
tLa»l‘lr} any direction is the force component in this direction,
éiuc’e

U U dx 8Udy 3V 05

an  dx dn | 3y dn = oz om

aaicc’s(n,x) +...=Xcos(nx)+...=Fm = F,
x .
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We have just scen that a conservative feld has a potential
such that F = grad /. Conversely, if 11 15 assumed thata °
ficld has a potential such that F = grad U, then it is conset-
vative:; for it follows that for any two points P and Pof the

ficld
P

F aly r \i
J F-(fr = -[(-é—-—— dx + P ) = Je’f {.-‘r = {"-(P) - U(‘P'ﬂ)‘\\ i
e X N’ 2
fl F 4 " -

* T \ :
so that the line integral is independent of the 1')a\th'}g.nd hence

vanishes for closed curves., y

e M"\i’ ' ,

The integral — U= —J Fedr is the potential energy; 1t 5
P \
. N/

the work which must be done to bring ¢ particle from 7 t0
Ps. Equation (2) is then the equatibr{ for the conservation.
of encrgy for the single particlg.ii'ft shows that the sum of
the potential and kinetic energies is a constant.

In electrical ficlds govérned by Coulomb’s law where
clements of like sign repelfit is usual to define the potential U
by the relation o

.ifx\grad U= —F

instead of (5) H‘}le potential is then equal to the potentlal
energy, whilg"iri' gravitational fields it is the negative of the
potential énergy. .

If t.hé}eld extends to infinity and vanishes tc a s:ufﬁmeﬂt
ordgn%t‘hen the point P, in (4) can be taken at inﬁmt}f, thus
fiwug the undetermined constant. The potential at P 18 then
~ Iﬂié work which is performed by the field to bring the mas

S\ from infinity to P; thisis equivalent with the condition U =0

at infinity. "
From a purely mathematical peint of view, we note that1
X, ¥, Z are continuous functions of x, ¥, %, then F = grad
is a system of three simultaneous differential equations for the |
function /. Such a system has in general no solution. From
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the above considerations it follows that (3) is an integrability
condition for F = grad U—that is, that these differential
equations have a solution if and only if condition (3) is satis-
fied. The solution is given by (4) and is determmed except
for an additive constant.

Under the assumption that X, ¥, Z are contmuously
differentiable, it follows from (5) that O\

© curlF =0, ie Z_23Y X _0Z Y _X O

dy 93 03 Ox " ox N
(See end of article and Chapter 8, Art. 5.) These three
equations on F are therefore necessary condlﬁéns for the
existence of a potential; we will find (Chap&er 3, Art, B) that

they are also sufficient. 9>\
R

Gradient and Curl N\

The derivation of a field vector) F from its potential is an
example of the use of the gradtent of a scalar, which we will
pause to study.

Let W = Wi(x, v, 2} be a , scalar function, contmuously-
differentiable, as, for eammple, the temperature at any point
in a body. The ({spvatwe in the direction of any unit
vector 7 is -

(7 WA os (n, x)+ —E/cos(n, ) -{— - cos (n,2).
671\ 8x dy
'S

The ve};tﬁr A whose componentsﬂ, EJ_VE' 6W enter (7) is

dx  dy 9
wknaWn as the gradient of W, and denoted by
\ ) A =grad W = YW (read “del” W),
where v is the symbolic vector operator (9— -(?— 2 . Since
ax 9y 8%

cos{n, x), etc., are the components of the unit vector ,
(7) is in the form of a dot product, and may be written
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'} !
ﬁ = CWenr =(grad W), = "grad 1" cos (4, n}.

dan

Hence the directional derivative is a maximumt when it is in

the direction A, and the maximum value of the directional

derivative is the magnitude of A, These considerations she#s
the physical meaning of the gradient and make it appﬁrent

that it is independent of the choice of axes (compare Tntro-

duction, abstract defnition of vector). \

Other uses of ¥ are in the quantities deﬁncd ‘by

A
(8) dirF =v.F=—= + — + = (divérg‘ence of F) and
ax ay daz O .
N
i i k
curl F = rot F = VXF = (1—6- 9 .
axn8y 0
XY 2

™
e

Art. 2. Newtonian (otent:al of a Body

A Newtonian field is conservative.

Consider fitst the field which a point-mass m at (%1, Y 21)
produces.  We' &’have seen that this produces the field
P\

~\Y F =m—r, where r = (6, — %, y1— ¥, 21— 2)
N .

Ev;dently this field is the gradient of the function

U=- + ¢,

which is therefore the potential function of the field, since

auv m(xy — x) )—F
dU—r T pa s =(——-—-———,.-. == 4
gra P ) w

The field extends to infinity, and if we make the function
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unique by the condition I/ = at r = o, we have ﬁnally
¢ = 0. Thus the function

© v ="
r
is called the Newtonian potential for a point-mmass .

Slmxlarly, if several masses #2, are located at the pomts
(x5, ¥s, 245, then thcu‘ potentlal is

(10) U= 2‘ '_":(x&_xl Fs= Yy Ba— & )! ;,\
s=1 ?‘3 : "
since it is easily seen that the correct expression for the force
field is ‘"\\\
omlx, — %) ¢
{11) F=grad U= 2 2222, ., ., AN
$=1 ?‘ss { \\

The potential function is continuous, togeﬂxer with its deri-
vatives of all orders, except when P is cdigcident with one of
the source-points where a mass is located.

The problems of one or seves'a;l point-masses are mere
abstractions; in practice we uswally have continuous distri-
butions of mass. Suppose that we have a continuous distri-
bution of mass filling a reg:on V of space (for example, the
space inside a closed spﬁgre) Let P:(x, ¥, 3) He outside of T,
and let dm he the mass of the elernent of volume aV = didndt
located at Q:(g, ()

The potentl{l Yor this continuous distribution is

(12) %JJ.J“' wherer = (( ~x,9 — 5, ~ 2,

singe/ ]}y the rules of calculus, differentiation of this function
leads/to the correct law of force for the field due to the dis-
tribution,

(18) F=grad U= (X, 7, 2) = (m.’fi‘ am, )
| ra=(%

2\
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The potential £ may be ditferenniated not merely once, but as
often as desired with respeecl to oy, voor o) for, since Pis assumed .
outside 17 the integrand is continunus and differentiable as.
uften ag desived with respect to v, v, 2, und since the boundary
surface is fixed, differentintion under the integral sign is per-
missible.
become O\

(12%) U = m Za O
I r ’ ‘}’ )

N
and ¢

(£ — x)pd ¥ O
(13') F = p;ra(l 5= (J.J,J' _'.f’.___'i._'....__ N\ 1
, AN i

The density does not need Lo be agontinuous function; itis
sufficient to assume that it is bound®d and integrablein V. _
The potential defined by (12) or (12*) is called the Nefw- _
tonian potential to distinguisj{’.{t’from the logarithmic potential
which we will now discugg® We note again for emphasis that ;
the Newtonian potentighis a continuous and a.rbitmril_y ofter s
differentiable funct;'gn,\af P:x, y, 3) for all points P outside V.~
™
Art. 3. Loggn‘:thmic Potential o
Let twp.points in the plane, P:(x, ¥) and Q:(#, n), be given
which g\tﬁfﬁa:ct each other with a force F acting along the line
Pq\ggd given by the law ,

mm
" & F = k —
¢N® r

S where v = V(g —a)it(n — ) "
. ! .
is the distance between the points. Here m.and i gl?’isa _
called again the “'masses’ of P and Q respectively, an s, |

constant independent of the position and masses of the Ifﬁ;'ofoe

The essential difference between the Newtonian law O -
and the present one is that the force is now assumed {0 be % |

1f we introduce the density p, the above equationd

o’
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sely proportional to the first power of the distance instead of to sts
sguare. The force which Q exerts on P is

(14) F = (Fcosa, Fcos B),

where ¢ and 8 are the angles which the direction from Pto @ A

makes with the coordinate axes. If we let km'= 1, we have
(14%) F=" _ ('m(-f — &} ’ min — 3’))’ :.\j\“‘\

#2 P »2 N/

where r =(¢ — x, 7 — y). ‘ R

s

All the formulas of vector analysis are valid iﬁ??-space {or

in n-space) except those which involve the crosé-product. The

force field here is again the gradient (Qr&nensional) of a
LY

potential funection:

(15) F=grnadl= (E_E{ (8. 12
Fs Ay
where N
N, 1
(16} U=m 10g.;..

This function is cal.leck:.‘ﬁ]\e logorithmic potential due to the
point-mass # at (J, oh.account of the form of the function.
The force field()

NZAET
(17) :‘\E‘“”_’: 2] __;9_2_3 ¥ fs=(-§s— x! 71'3'_ y}!
7\ §e= x

due to EiMésses ms at the points Q,: (&, 7s), has the potential
(18" U=Zmlog -1—
. o..\: =1 I
N a distribution of density ¢ spread over a finite portion S
of the plane, attracting by the inverse first power law, pro-
duces a field at an external point P given by

(10) F =”E{-ds.
Ay

pe
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This force field has the potential function

(20) U= JJ log L ad.S.
r
5

In all cases, we have F = grad U7

*%x
The logarithmic potential plays the same part i t’he\pli
as the Newtonian potential in space. Itisa COTIINUOUS 3
arbitrarily often differentiable function of the pesition of |
point P, when this is varied outside the region S of the pl;
where there is mass present, 2

Art. 4. Newtonian Potential of Surface Distributions and
Double Layers N "
Let a plane or curved surfate"S carry a surface distribut
of mass of density ¢ whichattracts by the Newtonian inve
square law. Assume the Surface to be finite, with conti
ously turning tangenﬁ’l{ﬂane or made of a finite number
pieces with contipuously turning tangent plane, joined. al
edges; also assuinie there are only a finite number of cors
or sharp paints.fas the vertex of a cone).
The fqr}s field and potential are here given by dot
integrals'extended over .§

(:22)“\::’}' =(,UU_G__;E§“" L ) _ 'U-tﬂ:is,

La nd
A\ 22) 7 = '”- odS .
3

t

the density ¢ being supposed bounded and integrable. '
is the potential of a single layer, in contrast with what is ca
the potential of a double layer which will now be studied.
Electrical forces and magnetic forces obey the Coule
law, which is exactly like the Newtonian law except that
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charges repel instead of atiracting. It is customary to use the
same definition for the potential function for these fields, and
to take care of the difference in sign of the field (from gravi-
tational fields), by writing
(23) Fum -grad U
for electric and magnetic fields. O\
Let 5 be a surface free from singularities and onc-sided 0
that the normal direction is a continuous function of the pnli
tion of a point on the surface. Select a positive dlreetlon for
the normal, which is then defined by continuity over the whole
surface. Let the surface S carry an electrical charge of density

¢, 80 that its potential function is J.IS%E ~ia the negative

normal direction from each point Q of¢ tlh surface locate (4
at a constant distance k, thus forming>a paralle] surface S,
We assume that for sufficiently smalik, the surface §) does not
intersect itself: corresponding points Q and ¢, have the same
normal. Let the surface Si.catry a charge of density ¢, such
that corresponding areaelements carry numerically equal
charges of opposite signg;i.e.
§ <8‘1d3; o lrds.

Such a condition’holds approxlmately on the two conducting
coatings of a Qlarged Leyden jar, The potential due to the
two surface{m then

11
o -H__ + J““S' -Ucki-—ﬂds.

wa leth+0and ¢ o, 50 that oh > u everywhere uni-
‘Iormly on .5; then aleo

H 1

lim L —n (—)
30
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Hence the potential

(24) U= ”,u Ea; (l) ds,

obtained as the limit of the potential of two single layers
of opposite sign which approach coincidence, is calle te
potential of a double layer. The function g is called the
moment of the double layer, and is assumed tg bg bounded
and integrable. 75

\
Since \/
_6(1)=_1 or D
m\r r? In \\
1L|ar
= —__| — cos\(s,x +_~cos #,
rﬂ[ae,“( ) o (.3
\\ ) + 97 cos (n, Z)]
A o
='\‘";}% [E_Txcos (n,x) 4+ ... ]
1
;7 = — =1 —cos(r,x) cos(n, x) —....
A\ / ,2
R Gf r is directed from Q1o P)
\\' = }-cos (r, n),
. r

~C “\,tﬁe potential of a double layer may be written
(24%) U= ” ucos(r,n) 1o
2

¥

(The potential of double layers was introduced into the theory
by Helmheltz,)

For completeness, we remark that the Newtonian poten’ﬂi‘-l
due to a distribution of mass along a curve, attracting by the '
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. fdm (v .
inverse square law, is J xes, ~We will make no use of
this definition. r r

In the plane, consider a curve made of a finite number of
pieces with continuously turning tangents; let this curve €
carry a distribution of density ¥ acting under the inverse first
power law. The logarithmic potential of this single curve
distribution is then (M

7'\
Ny

{25} U= J-log_l_ dm = Ify log i ds, ("}}, o
I3 r
th

¢
~\
where ds is the element of arc. By a passage-te’ the limit
exactly analogous to that used in defining a dquble layer, the
expression &

(26) U= J ¥ 9 (log —1~) ds =J. ____-“feés (7, m) ds

¥

is obtained as the potential of @ double linear distribution.
Also, the potentials of single and ‘double layers are continuous
and indefinitely often dlffgentlable at all points outside the
acting masses,

&

Att. 5. The Lapface Equation

We will {I’J}.‘; study a very important property of the
potential,which is common to all the potential functions which
have been defined. We note that the function

O 1L ] .
w V-t~ - )

which may be considered as the potential (Newtonian) of. a
unit mass located at (¢, 7, {), satisfies a partial differential
equation. For we find

Q.
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t 1
"_(_‘_r'_'_)_=§._—_ € ? () _ L e

dx r dx? P rs

and similar equations for the derivatives with respect to.y
and z. Hence \

(), #0), ).,
(27) . S AR Y VAN S

ax? dy? 9z

This is Laplace's equation, fundamental.mf{l"'the whole of

potential theory. For convenience, wesatroduce the abbre-

viation }\“
17 2] QL

(28) vy=2U  PULEU.
dx® AV 9z

then the potential ? of a pojﬁﬁt;-mass satisfics the equation

(29) AU = o.

Laplace’s equationis a second order linear homogeneous
partial differentjal €uation of elliptic type. From its linear
homogeneous ch\at\dcter, it follows that if uy, us, %35, ..., n

are solutions,kithen any linear combination
¥/
QO oy eour . L+ Cmti

oy ) ) ) :
with constant coeflicients ¢, is a solution. Hence the potential

E‘;?_"ﬁue to several point-masses satisfies (29} since each term
%

.»\:'g\),f'the sum does. Moreover, for the potential due to a body
\/ mass distribution, we have

VU = L[J'w (_i_) pdV =0,

since differentiation under the integral sign is permissible, .for
all points P:(x, y, z) outside the region V where the distribution
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is located. The same is true of the potential of a surface or
single layer. '

Likewise, the potential of a double layer satisfies Laplace’s
equation. To see this, it is merely necessary to note that the

. 1y . . . .
expresmong_ (_), in which £, n, ¢ are the variables for dlﬂ?e;'-.\
7\ ¢

Nows
entiation in the normal direction, satisfies Laplace's eq}lé.ﬁon
in {x, y, 2), since N

SO

Correspondingly, in logarithmic potenj:i;li\,{ve find that

A\
& 1 tE—x d° 1) N 2(F — )
—llogZ } = s —llog )= - +——,
ax(og r) re axe(og rd > »r'*‘+ ré

o

and hence N
a1\ pWrf 1 |
30 —f{log — bt — (lo _) ={.
80 axﬁ( g{)‘-}-ay” g
Accordingly, for funqiijmfs of two variables, we define
N 2 2
31) SO ey 28U 2T
A\X oxt  9y*

Then the'lng\afithmic potential of a point-mass, and accord-
ingly aLQ{hé forms of logarithmic potential, satisfy Laplace’s
equation in the plane, at all points outside the acting masses.
\K.:t;' 6. Behaviour of the Potential at Infinity .
We will next investigate the behaviour of the potential and
its first derivatives when the field-point P moves off to infinity.
Consider the potential of a body

i
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Let g and G be the lower and upper lhinits of the distance 7
from P to the integration points Q of the region ¥ (bounded);
then {or all points Q in the volume 1 we have

g=r=<¢G A
s50 that .
[ <pme e, O
G J O
or “(""«:
(32) M opM, &
G £ v

where M = -”J pdV 15 the tota! mqss%f the hody, If now
\

the point P moves off to infinity{,or R » o where R is the.

distance from P to the origin | of eoordinates, then g » = and
G » =, so that ON°

\ N
LR Y

(33) Jim U =
. -

Hence the Newtop:&n potential vanishes at infinity. More
exactly, smce G\»l and % +1as R4 =, and since

A/
O MR - ry < MR
:"\1. G g
we\licw*'e
REL) fim (RU) = M.
\J Ry w®

This proof assumes that the density p is everywhere post-
tive; but in the general case we may suppose that the positive
portions of the mass and the negative portions respectively

produce potentials U, and U_, and show as above that

lim (RUyY» M 4 and lim (RU_) » M _ where M ¢ and M.
are the total amounts of positive and negative masses.

T



ART. 6 BEHAVIOUR AT IxFINITY 35

Then (34) follows by addition. In the same way it can be
shown that the following inequalities for Newtonian poten-
tials, and also the limit equations and irequalities for logar-
ithmic potentials, are valid in the general case.

“Moreover, since

U _ ({1 ¢—n) ... O\
B .”J.?? ;7 paV N7
and sincei—é—;—-ﬂ < 1, we have n."'}“
. ”‘l\'\.
aU '['“-pd!V___J. Aa
% ¥
RN

If we treat J in the same manner that wqtreated o above we
find
"R2T > M as R -)v .

Hence R* for large values of R has a value less than

some bound C which is mdependent of R. The same condition
holds for all three first partial derivatives, which we will repre-
sent in general by DKU We have therefore

(35) N RIDUI<C _

This conditigmimplies the less sharp result that 2,U > 0 as
Ry o, Th} relations (34) and (35) hold of course for the
potentxa{due to a single mass-point # or to several masses m;,
and also'for the case of a surface distribution of mass.

o ~Finally, since the denominator in the integral {24%) for the
potential of a double layer contains #%, it follows as above that
for a double layer R2U, instead of merely RU, is bounded.
Hence for the potential of a double layer,

(36) ' lim RU = 0.
Ry
This result can also be obtained from (34), since the total mass
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of a double layer is zero.? Similarly, for a potential U of a

double layer, we find not merely R} D\ UL, but

(35" R\D\U| < C.

This is stronger than (35), which is therc{ore valid afor!ior;.\
We may also obtain inequalities as follows: let .\:.\

M 1 1 oy QO
w= -"E —J'IJ(r R)dﬂl, ((f “(pC{V),
'\'\

o ef i - 2

But |R - 7| is less than the dlstancc\(mm Q to the origin and
is thercfore bounded. Also r/R» as R =, so that this
ratio is bounded, and is indeed, uniformly bounded forQin V.
Hence Rw| is bounded. Thi® is stronger than the equation
Rw » 0 which follows from RU > M as R» =. Moreover,

sl 5o
R3S s[5

The ﬁrst,gltegral is bounded. The second is equal to

then

Z x R3 RS
x R,
.s\\ R”.[ O
3 2 z, .
But R. = 1 and T& = (r — R) ’i%_.j—_& is uniformly

bounded. Hence the second integral and hence R® 3;

is bounded, and hence also R?|Dj| is bounded. Similarly.

it may be shown that, for the potential due to a surface

M
distribution, U = JJ dm , the function w = U — 7 has the

L4

1This follows easily from the definition of the double layer in Art. 4.
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same properties, namely that Rw| and R¥Dyw| are bounded.
For the potential U of a double layer, which has the total’
mass zero, we have already proved that RYU| and R¥D.U]
are bounded. _

We turn now to the logarithmic potential, which is

quite different from the Newtonian potential in its behaviour . |

at infinity. For the potential U = .” 10g—1—dm, when ;th'e\"’
. ¥ s N\

distance from P to any point Q of the mass is so great that
+> 1 everywhere, we have w'\'\.’

—U =1U =.H10 r dm.
|Ul Eram 3
Using the same method as above, we ﬁnfl.j\ ™
Mlog g < |U| <_M:10§ G,
or N
(37 lim Upst— o,

Ry m, 08

which is very different from the result in (33). More exactly,
since o\

N
R NS

3

log g >1 and.lfig\l;-y lasR > m,wé’ﬁnd-l—g—]-)M.
log R og R log R
or PN\
N U
#8) lim —C— = M.
AN\ Ry, 1
.'s'\ log—~
A\ . R

(" Wehave

F T e

ax ¥ 7

from which it follows easily that R %L-I
%

is bounded; in gen-

eral, for the derivative in any direction,
(39) RID,Ul < C.

N
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The refations (38) and (31) hold ulso for the logarithmic
potentials due to point-masses and masses distributed along
lines,

FFor a double distribution (distiibution of doublets)
along a line, the total mass is again to e called zero.  From
. COs (r H
the integral U = JL( ---)d.\ ol

r
along a line, since r occurs in the denominatogitican be seen
that RU is bounded, and therefore L7 > Qm’: Ry = thlﬁ

).
a double dispribution

!
is stronger than I——{—'R +» 0. For ll'[}.‘l. values of R, not
og
only R|D,Uj but also R{D,U| is on‘a( d.

Further relations can be ohtam(,d as follows. For the

logarithmic potential U of a,dlstnbutmn in the plane (inverse
frst power law), let ,.}:’;

Ny 1
w(x,y) = U — M log 1 =JJ (l(}gL — log -) dm.
< R . r R
) §
This can be wri(te?i

O r
2" w = —'Ulog—dm.

O
Smc\f‘or all points Q of S,7/R» 1 or logi 3 0 uniformly,

i follows that w+ 0, as R» ». It may even be easily

K w,proved that Rw is bounded. Also, from the equation

s
X
\ 3

ow _[f(t=x, =
ol ()

it is easy to show that R? i—w
x
bounded. The logarithmic potential of line or point distri-

butions has these properties also. For the potential (logar-

and in general R’*’|D1W|, 5
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ithmic) of a double line distribution (mass = 0), it has already
been shown that 7 » 0 and RleiU] is bounded as R » ¢.

Exercises: Carry through the derivation of (35%), that
R*D, U} remains bounded for the potential of a double layer,

] \
( ) | - 7 )
¥ 2 A

in detail from the definition U =,”“ 3 dS by setting{ ™
" \

2 (}') O
. ___1_{5 —x ¢
¥

cos {n, %) £

an ¥

M) : cos (n,3) + 822 cs)s\}n z)}

and carrying out the differentiation for.” i(—j under the integral
Sign. ‘,"”.. ax )

Similarly carry out the pl;qt;f that R2D,U]| is bounded for
the potential (logarithmic) of a double line distribution.

Art, 7. Harmonic hcgons. Regularity in the Finite Re-
gions and ab Infinity '

As we hayé’séen, every one of the potential functions
which have been defined is continuous and indefinitely often
differentiabie’at all finite points of free space (or plane),® and
satisfigs\liaplace’s equation. We will now take this equation
asa startmg point and define: 4 function U which is continuous
il continuons first and second derivatives in a finite region® G,

de there satisfies

ViU = 6U+§fg+§fg or V2T = a!U+£=G‘-

ax? 9yt gzt dxt 3y

‘that means: mass-free points,
G i3 an open connected point-set in space or in the plane,
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is called ¢ regular harmonic function in ;. The function is also
said to be regular in 6. A harmonic function is said to be
regular at a point if it is regular in some neighbourhood of this
point.  Such a point is called a “‘regular point” for the fune.
tion. The Newtonian and logurithmic potentials are reguigr
harmonic functions al every finile mass-free point of space@nihe
plane. We will see later (Chapter 3, Art. 7) that every fithe-
tion regular and harmonic in a finite reglon may bc.represented
as a potential function. The concepts are of “getertial and
of "regular harmonic function” are therefoge gssentially equi-
valent.

A harmonic function (solution of L’bbl'ut s equation) will
be called regular at mﬁmty when iy \:» Fegular in some neigh-
bourhood of infinity, that is, for al! finite points outside some
sufficiently large sphere, and® ¥or R =Vx* + y A+
satisfics the conditions %

(40) lim RU ei&é'ts and RD.U is bounded.

For example, the fuhctton 1/R is regular at infinity. The -
three Newtomar\gptentlal functions are regular at infinity.
The limit A\
(41) Qo lim RU = M
O Ry wm
is called? the “‘mass” of the harmonic function. This purely
anal)\\t\lc definition of the mass of any harmonic function which
ise r.'f;g'-llar at infinity is evidently in agreement with the con-
Cept of the total mass which produces a Newtonian potential,
) since (41) holds for all Newtonian potentials. )
In the plane we make the following definition: A harmonic
function U(x, y) is said to be regular ot infinity if it is regular
outside some sufficiently large circle, and if

(42) lim U = C exists and R2D,U is bounded,
when R = V¢t + 923 o. We will later (Chapter 8, Art. 5)
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find that the existence of lim U alone ensures regularity at '
infinity. The conditions (42) are therefore not indepen-
dent, though the conditions (40) were. Of the logarithmic
potentials, the potential of a double dlstrlbutlon on a line is
regular at infinity.

If for sufficientty large R,

(43) U= Mbg~+m - O

where M is a constantand wisa harmomc function regular at
infinity, then M is called the “mass” of U. Thiséanalytic
definition is in agreement with the total mass of a distribution
causing a logarithmic potential. The logarithniic potential of
a distribution in the plane is regular at infinity*if and only if
its total mass is zero, as is true for double digtributions.

The mass of a Newtonian or Ioga,nthr;\nc potential is inde-
pendent of the coordinate-system, and\se is the mass as defined
by (41) or (43) respectively. RN :

Since every harmonic functmn can be represented as a
potential, and converseély evefy potential is a harmonic func-
tion, potential theory jid“also the theory of the Laplace
equation. Since Lagla'c}'s equation is the simplest partial
differential equation®of elliptic type, potential theory serves

‘as the - foundatlon, yvthe model and the introduction to the
. theary of elliptié/partial differential-equations. (The general
linear partlal\dLFferentnaI equation of the second order

"\5
Nk
& y + 1422 — i -+ Ais
2 3\ gz’ axay
'S M0 '
Q) &—+“+w+pxo.
3
is elliptic if the quadratic form X Ay w %5 is “definite.”’

f,i=1

Comparej Hadamard, Cours d’analyse, Vol. 1I, p. 31l
~ Paris 1930.)
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Art. 8. [Equipotential Surfaces and Lines of Force

Let 1 be a Newtonian potential tharaonic function) which
takes on the value g at a mass-frec (regulae) point P, then
the equation | ~
(#4) iy, y,2)=u A
determines a surface passing through the point P, {Suth a
surface is called an equipotential surface or level soeface. It
has in general a continuous normal and a Cf.)ll'l(i‘l'l'&lﬂlls curva-
ture, since the second partial derivatives o{&;n're continuous.
An equipotential surface can only have g sigiular point where

the three partial derivatives QE q}‘\}'a—-“ vanish simultan-
dx 8y, oz )
cously, i.e. where grad & = 0. \%When ¢ is given dnﬂ’erelnt
values, the equation (44) represents a one-parameter fa!l}lly
of surfaces. Only one sugfacé" can pass through any po;nt.
since % cannot have se,\{éréfl different values in one point

~

. . N I
Since u is constant op(a level surface, we get — = 0 for every

PAN as
tangential direc{({n's’. Therefore the force-vector {see Art. 1)
) du Ju du
“9) P\ grad w dx dy 32

is eVﬁF»!(\}Vjiéfe perpendicular to the surface. The lines faf force
are ,@es’e curves which at each point have the same direction
ag\the force there. They are accordingly perpendicular to the
~strfaces (44). They form the orthogonal trajectories to the
\m‘; “surfaces ¥ = constant.
Correspondingly, in logarithmic potential, the lines of force
are the orthogonal trajectories to the equipotential curves.
For the example of a point-mass located at Q: (¢, %, § ), the
level or equipotential surfaces are the concentric spheres

r=V({E — x4 (y —n)t+ (¢ — £)? = const.
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The lines of force are the straight lines passing through Q.
Also in the case of the logarithmic potential of a point-mass,
the equipotentials and lines of force are concentric circles and
radial lines,
The lires of force have the differential equations (compare
Chapter I, Ast. 4)
du du du O\

46 dy :dy 1dg =-"—: — PR
46) > dx dy 8z - O

N\

Q"

where dx, dy, dz represents a displacement along theslme of
force; or in the case of logarithmic potential L0
du  ou \%
dx ay AN
Consider the example # = % — 4?, which €vidently satisfies
Laplace’s equation. This potential ig)regular in the finite
plane. The equipotentials form ay $et of equilateral hyper-
bolas. They have in general no. singular points. The only
exception is the degenerate hyperbola which is formed by the
pair of lines y = x, ¥ =/x; on them the origin, where
grad# = 0,isa stngular, point, and in this case a double point,
The two branches o t\he degenerate hyperbola, ie. the two.
lines, cut each otheorthogonally there.
The lines of\fofce are obtained from the differential equa-

(46*) dx 1 dy =

dy
tion ;31_ = —-&whlch leads to xy = const. They are likewise
x  O\¥
equﬂat&é}hyperbolas
Edereise:  Determine the lines of force for the eqmpotentlal
sm‘fa,ces % o= g 4t — zﬂ- const,

Att. 9. Examples and Problems

We will now apply the theorems derived in the preceding
paragraphs to calculate the potentials of several mass dis-
tributions.
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1. Since the potential of a given mass is defined by a
definite integral, the potential in the various problems may he
found by simplifying this integral and evaluating it when
possible. But it will often prove to be casier to use the fact
that each potential at points of free space is a solutiofol
Laplace's equation. Some problems will show the Jvalue of
the new method. o\
Consider the potential of a mass distribution, [gjﬁ'g between
two concentric spheres, when the density is constant or merely
a function of the distance from the centre of the spheres. On
account of the symmetry, the potentia\tist depend merely

on the distance R = Vx* 4 41 | g2 froiw’the centre, taken as

- » . ' )
. the origin of coordinates. We thecefSre transform Laplace's

o

equation, by setting [/ = U(R}NThen
U _ 4V x
. SWR R
PU _#0Nx qufy
i _GR R EE(E _1"%3)'
and correspondin\g'feszpressions for the derivatives with respect
to y and z; hence

2O gy o®U 240

O dR*  RJR
0~ dif | 2 df | 2dR
Let\g4=R;th Y2 4 4 £,
‘}?}lR TR ; then R TR0 f+ R
3 log f + log R*= const.,, fR'= —g, f = ﬂ—‘%,
and finally, U=2% 43,
R

where ¢ and 3 are constants,

Now we must distinguish between the two cases, P
outside the outer sphere or inside the inner one. In the first
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case, the condition (34) RU > M as R » = leads to the evalu- °

ation of the constants, ¢ = M, b = 0, so that

. M
47 U==.

(47) | R

For the second case, since the potential must be regular at the
origin, we have ¢ = 0, so that '
7'\

(48) ' U=5s : g

2%

~ 'The constant b is determined by evaluating the ippe?grefl for
the potential at the origin (compare Chapter §,-Act’ 10).
From {47) it is evident that the potential outside the larger
sphere is the same as if the mass had all bggm\cbncentrated at
the centre. This is hence also true for the\force
Mz My _Mz).
R
Equation (48) shows that inside the inner sphere the force is
zero, or the mass exerts ne_{orce at all on a point inside a
hollow spherical shell. &

By taking the r c:l‘fust of the inner sphere as zero, the
above derivation gives'the potential due toa complete spher-
ical distribution, & Sutside the sphere.

By passin {tb the other extreme, taking the radius of the

inner sphere-équal to that of the outer one, (47) and (48) also

yield tl{Qpbtential outside and inside a spherical surface

distribation of mass of constant density. .

. :T\lié corresponding problem in the plane is the problem of
‘& distribution over the area between two concentric circles,

attracting by the inverse first power law, when the density is

afunction of the distance from the centre only. Then U=U(R),

and Laplace's equation becomes

aU , 14U _

=2 % =0
VU= TR

F=gradU=(

£ \"\

Q"
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U i | f a
—=fR), thenX 4+ L g -2
Let R/, then 2+ 2 f="%

1
U= a IOgE + b, e
where ¢ and b are constants. If P is outside the outer, ¢ixcle,

the behaviour at infinity, U — M log R% >0, teadeto the

N

evaluation of both constants, so that ¢ = M, ,b'j% 0! and
.

1 S
Ue Mlog—- g
R

¥

When P is inside the inner circle, it {g;r}céessary that ¢ = 0,
s0 that O\
U = b.; N\

Remark. In three-dimensidnal problems it may happen
that the potential functionls clearly independent of one
variable, as in the field argtind infinite straight parallel wires
or cylinders. Laplacels equation then reduces to the differ-
ential equation in Wo\/ariables; hence logarithmic potentialis
important in elettrical theory, where parallel conductors are
often used. ¢\ '

2. Homqéeﬁeous straight wire 4 B with mass of constant
density y(see Chapter I, Art. 3).

F\iiﬁ'flt'he potential U at an arbitrary point Pi(x, y, z). Take
thelwire as the z-axis. Let the coordinates of 4 and B be

E‘ and b respectively. Prove that
N ; )

U.:J. ydf
2 VI + 924 (2 — )2
Vi + b~ st b 2
'\/.02+(a—z)?+a—z ,

distance of P from the wire.

=« log
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3. A constant force field is conservative. FExample: The
gravitational field of the earth in a sufficiently small range.
Leta, b, cbe constants and let X = ¢, ¥V =8, Z = ¢. Find
the potential, which is a linear function of %, y, .

4. A force field is called "‘central”™ if the force-vector
always passes through a fixed point, the “centre,” and the
magnitude of the force is a function of the distance r from tﬁe
centre only. Example: The Newtonian fleld due to a~ma.ss-
point. A central force field is conservative. Let f({')’be the

magnitude of the force, so that X =f{r)—£,mlt<'\a f(r)_ji,
Z = f(r) —z- - Show that the equations (ﬁ) 1{{Art 1 are satis-
fied. Prove that U *J}(r) dr is the poténtlal

5. Ii the force vector is always, perpendlcular to a fixed
line, the axis, and if the magmt;ude of the force is a function
of the distance from this line on*ly, the field is an “axjal” field.
Example: The infinite homogeneous straight wire, attracting
by the Newtonian law “(('{hapter 1, Art. 3). An axial field is |
conservative. Let theé\axis be the z-axis. Introduce cylin-
drical coordinates & A pcos ¢,y = psin g, 5. The magnitude
of the force is theghd function f (o) of p. Determine the com-

P R .
ponents of t'l:(e” force. Prove that U Jf(p)dp is the poten-
2
tial. In’txlya tase of the infinite wire we have f(p) = ?‘Y Show
that U 2y log — =+ constant..

\ A more general definition is the following: A field is axial
if the force vector always passes through a fixed line and its
magnitude depends on the distance from this line only. But
such a field is not necessarily conservative; eg., the field F
={x,3,f (n)), where p= Vg2 -+ 2, is axial in the above more
general sense, but obviously not conservative.
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CHAPTER 111
THE INTEGRAL THEOREMS OF POTENTIAL THEORY

Art. 1. Gauss’s Theorem or Divergence Theorem ¢\

We will now obtain the divergence theorem, Whibl\l is of
fundamental importance in potential theory. R ™~

Let 7 be a bounded, simply-connected and finite region of
space, enclosed by a surface Swith continuousl¥.turning normal.

Assume that any line parallel to the x-axisytuts S in at most
N

two points. Let F; and R, be continudus on V. + 5. Con-
sider the integral ox PN

J-J:[?-édlr’ = -[,Jﬁ% dx) dyds.
J % 3 dx

If we carry out the integration, with 3 and z constant, in the
- direction of the x-a)gisg\this becomes (it is assumed x> x;)

[0 i

wh_ere the Iingy = const., 2 = const. cuts the surface .S in the
points I;’\l. °t, 9, 2) and Py:(xs, v, 2). The infinite rectangular
cyhn%t erected on the area element dyds cuts S in the area
Fﬂ?l}f(?\lts d§) and dS; at P, and Py respectively. Let 1 be the

(fxterior or outward-pointing unit normal to the surface; this

\'makes an acute angle with the x-axis at P, and an obtuse
angle at Py, so that we have (Fig. 4)

. dydz = —dS$, cos(m, x), dydz = dS, cos(ny, %).
The integral then becomes
J.j[F 1%, 3, £) cos(ms, )dSy -+ Fy(x,, ¥, 8) cos{n,, x)d.S1]
48

QY
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Fic. 4

A
7
»

which reduces to a surface integral; the final resu[’b\rnay then
be written

~NYi
£ [[[2Eay = [[ 7. cosgu B,
v s PN

where the integral on the right ,isf’xa'ken over the complete
surface S. This formula was.@btained by Gauss. It is of
importance that it transforms! ahvolume integral intoa surface
integral.

The hypotheses of ,tﬁe\above theorem may be made much
less restrictive. 1f the surface is such that a parallel to the
x-axis can cut it in@finite number of points Pi(k = 1,2,3,...)
the number of*goints will be even since the surface is closed,
and the oufward normal will make alternately obtuse and
acute angles with the x-direction at the successive points.
The pqu'}tion (1) will still hold. Also the region V need not
b‘{ Sif"l'f)l)’-cc\nnec:ted; it may be multiply-connected, or it may

\?)? composed of several unconnected regions ¥, each enclosed
il the corresponding surface Si(i = 1, 2,...). The surface
integral is then to be the sum of the integrals over all the
bounding surfaces,

-+

S
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Of course the theorem also holds for regions such as the space
between two concentric spheres; here outward normal means
the normal to the surface pointing away from the volume 7,
i.e. outward from the outer surface and inward from the inner

surface, and the surface integral is taken over the two bou nding™
surfaces. O\

The bounding surface S may contain a finite urnber
of edges, which divide the surface into a finite Sfiumber
of pieces with continuously changing normal dire@ti’én. Also
a finite number of singular points on § are allowable, as for
example the vertex of a cone. Such a pointvmay at first be
excluded, by truncating the cone by a plane; the thcorem is
valid for the truncated region, and rg;ﬁains valid in the limit
as-the plane moves to the vertex ofithe cone.

In a similar manner, we may, obtain the equations

T
s
Jﬂ\%g’\dv = ,U Fy cos(n, 2)dS.

By additic;n‘ of these three equations, we obtain Gauss's
theorem or)ilte divergence theorem

7
@ O ”J(ﬂi T+ Dyay -
\\ 1\ + Py + g L4

\ H- (F1 cos(n, x)+ F, cos(n, ¥) + F; cos(zn, 2))dS.
5

o’

“;here F"_ Fo Fy are any three functions continuous in the
c OSEd. hreglon V + S with continuous partial derivatives there,
7 1s the outward normal, and the surface (or surfaces) S is as

de:acribed above. By defining the vector F = (F1, Fa, Fs),
this theorem may be written
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(2% J %-j'c-’-FdV = ”n-FdS.
L J

In the physical application where F is the velocity of flow of

a fluid (sce Art. 2) it is casily seen that the integral on the

right represcats the low ou tward through S in cubic units per {

unit time. This accounts for the name divergence theorepn, .

and the name divergence for the quantity \ Ny

G P —gep =08 9F

ax dy - ¥ I
Consider now a planc region S bounded by thlg,\c\lirve C (or
~ curves), which is such that Ciscut by a parallel to either axis
only a finite number of times, and C is comiposed of a finite
number of pieces having a corllinuous!y't;ufhing tangent. Let

aF s . Nt .
Ry, F, E——l and 972 e continuous in'the closed region S+ C.
x AN

ay N
Then we may prove in a similgriway that

{3) JJ (ﬁf + 'EI_E)({Q =”:[ (F, cos(n, x) + Fq cos(n, v))ds

P ox ay
3 ) T
or \\ ’
(3%) \H veFdS = J n»Fds,
\ 3 o

n
Fic. &
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which may also be written in the form

(3*%) JJ (é‘ﬁ‘ + ‘2{’,) ds = J (Fidy — Fadx).
¢ \ox 3y z

N\
In this last form, the line integral is to be taken in such\a
direction that the region S lies along the left side of C¢\The
region S may be multiply-connected or may consist df séveral
unconnected regions S; bounded by curves C.. (Figss.)

Exercise. By using (8) or (3*%), expresig'\tsh"e area of a
region in terms of a line integral around its houndary,

)\

n \J/
Art. 2. Divergence. Solenoidal Fields)

To substantiate the statement made above about fluid flow,
it is merely necessary to note that the fluid which flows in unit
time through the element of surface 45 would fill a tube with
base area d.5 and altitude E,;‘néfiere F, is the normal component

of the velocity F. Counting flow inward as negative outflow,

it is then evident that<

4) : Jlj"df;ilz‘dlf = ” neFds = ” F.dS

is the net’oittflow in cy
using ;P:e\theorem of th
ﬂovy\éer unit time is

A \ ”jdiv FiV = (div F),,,” dv = V- (div F)p,

where (diy F)w is a mean value of the quantity

bic units per second. From (2%), by
€ mean, it is evident that the net out-

div p =30 9F: | oF,
- dx dy oz

the value of this quantity at some point
1s by hypothesis a continuous function.

over the region ¥, or ig
mside ¥ since diy F
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By letting V shrink toward a point P, it may be seen that the
divergence of the ficld F at P may be defined as

i mres

) div F = lim 30—
{5) iv V1+0 7

and the two integrals in {2) are independent of the coordinate
system. The integral on the left in (4) is called "tptal diver-
gence”’ for the region V. ."‘.,\\

If the fluid flowing is an incompressible liquid; and there
are no sources or sinks (points where liquid+is produced or
destroyed), then the net outflow from aaysuch region of space
must be zero. It follows that the divergence of the velocity
must be zero at each point in thq,régic;n. Conversely, if the
divergence vanishes everywherepithe net outflow from any
region is zero and the liquid! s incompressible. Hence

(6) {hv F=0
is called the equations Kw’nténuiﬁy for the flow of velocity F of
an incompressible liguid, and expresses the condition of incom-
pressibility. Q"
~ From thg&(iy‘ergence theorem, it is seen that the condition
A& . _
N\ div F =0

. O\ i
is equivalent to the condition.

\(72 > Hms = ”n-FdS =0

for every closed surface S.

If the field F has a potential, and hence is the gradient of a
scalar function U, then

(8) div F = div grad U = V*U,
s0 that the divergence of F is the Laplacian of the potential

O\
These considerations make it evident that the quantity divyF °

Q.
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function U. If U is any scalar point-function, as for example
the temperature at the points inside any object, then
(9) divgrad U = 92/

is likewise independent of the coordinate system.

When F has a potential function U, the di
takes the form

(10) J” VULV = J.J' U s
an +*0
v 5 o\

The condition for incompressibility in flow™of a fluid with
velocity F becomes Laplace's equation 5\

Q!

N
vergence theotem
N\ ¢

(1) VU =0, N\

or the condition O

(12) [
Jodp

for every closed surface $4n the field.
If the given ﬁelc::Li{ a force field, the integral

(13) & ” F.dS
N/ 5

is called theflux of fo

: rce outward through the closed surface S.
The diveérgence the

dive ; orem therefore states: the foial divergence
for egeon V is equal 1o the Sfux of the force outward through the
Eﬁg}ndmg surfoece S, A force field which has zero divergence
\ oy

. ghout a region is called a solenoidal field in this region.
“This term has therefor.

{ e the same meaning as the term ‘‘incom-
pressible” in connection with Auvid flow. The flux of force out
from a closed surface ig zero, provided that the surface
bounds a region throughout which the field is solenoidal.

Nm:wnian Jfoelds are solenoidal ot ol points outside the actual
™mass distribution, from equations (11} and (8). Newtonian
fields are therefore both conservative and solenoidal. Con-
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versely, if a force field is both conservative and solenoidal,
then it has a potential U which satisfies Laplace’s equation
and is therefore a harmonic function. (We will see in Art. 7
that every harmonic function can be represented as a Newton-
jan potential. Hence cvery conservative, solenoidal force field
may be considered as a Newtonian force field.) O\
Consider all the lines of force which pass through the poifits
of a given small closed curve. In general they forrn&l’tube-
shaped surface which is called a tube of force. L&t such a
tube of force be cut by surfaces perpendicular t6"the lines of
force in two places. This gives a region V bounded by the wall
of the tube and the two cross-sections Sy, Sgt/» he flux of force
through the wall of the tube is zero,.sif! “the normal com-
ponent F, is zero at cach point of the wall (the force has the
same direction as the line of force ateach point). If the field
is solenoidal, the flux of force outifrom the entire surface of V
is zero, so that NNy

” FdS% ” FdS =0,
St \\ b S

where the outer nérmal is used on S and Sa. If we reverse

the normal on 8y this equation becomes
’\u .

.~\'1.

S ” FodS = ” F.dS.

A\ 51 51
Erpzﬁ this we have approximately

N/ Si{F)1= Sa(F)
Where S]_ and S2 represent the CI_'OSS-SeCtiOH areas Of the -tube
at two places, and (F)i, (F): are the magnitudes of the force
at the two places. Hence it is seen that for solenoidal fields
the strength of the field at various points along a small tube of

forc.?, is approximately inversely proportional to the cross-
section area of the tube. The smaller the cross-section of the
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tube, or the closer the lines of force crowd together, the stronger
is the field. The more the lines separate, the weaker the field.
The lines of farce for solencidal fields (Newtonian, for example)
therefore give information about the strength of the fielda

well as its direction. The term *'solenoidal” comes from the
Greek word swhy (the tube). O\
7'\

Art. 3. The Flux of Force through a Closed Sugfég;

A Newtonian field is solenoidal at all poin!;gQﬁ *free’ space,
that is, outside the attracting masses. Thefefore the flux out-
ward vanishes in a Newtonian field for all closed surfaces S
which contain no masses. On the othér’hand, this is no longer
true when the surface S contains ¥iasses in its interior. We

N

will investigate this case. W W

* . ". 3 1 1] -
First consider a surface Sceontaining a point-mass m at 0

in i?s interior. Let T bea small spherical surface about @ of
radius 7, small enough tolie entirely within S. Since U = m/r,

(14) '”' FrdS= J¢ i‘-\‘{}d,s:. J - d85=—~ ™ 4yt = —4ym,
_ Ko o n r

by

where # is the.6utward normal to the sphere 7. In the region
v’ _betwet}ﬁ T and S, the field is solenoidal, so that

Q)
(150" H@ds +”%gds =0,
& 1]
\ T

dn
§

(" “where the normal is outward on §, but inward on 7. Com-

O

bining these equations and noticing the reversal of the normal
on T, we find

(16) JJ. FdS = Jjﬁjds = —4rm,
K E an _

sr'ht_ér_e the normal is directed outward. Now let V contain 2
1stributed mass of total magnitude M and density p; let this
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distributed mass be contained in a region V; lying eatirely

interior to V. Then U= “Ti dV, where r is the distance

r

i
from the element of mass at Q:(§ = ) to the field point
P:x, y,2). Hence
O, O
" ¥

” gds =U “Jp ——dV 1 dS.

&

: . . A S
Since Q varies in V) and P varies on S, the intégrand is finite
so that the integral is a proper one and the order of integration
may be changed, giving 0>

.’\“
(9
au 4 4
— = ~ "'w—__‘dS dV.
.”an a3 ,”J“’ J an
AR

s R

But from the consideration of a point-mass ahove,

\gﬁ (%) dS = —dr.

(This is the ﬂux\‘thrbugh S of the force due to 2 unit mass at ¢.
See also Arg, (Dol this chapter.) Hence
0
) Q& !H%T dS = —4r J” odV = —4rM.
™3 5 1
;\l.t’is’immaterial whether or not there are also present other

 dsses outside S, because the field due to such masses is
solenoidal inside S and therefore gives no outward flux from S.
It is also immaterial if the mass distribution reaches out to the
surface S instead of lying entirely inside it. In this case let S
be a slightly larger surface containing S and hence Y in its
interior; then the flux outward through S is —4rM. But the
field is solenoidal in the space between S and 5; by letting 5
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deform continuously into S, it follows that the theorem (17)
holds for §. The theorem (also due to Gauss) may be statedl :
the flux of force through o closed surface is —47r.f‘|/f . Where M ds
the mass contained in S, Of course, the mass is supposed to
be acting according to Newton's law. N\
Remark: The potential U/ satisfies (17), and mereover
.according to the divergence theorem G

[ o
JJI VUV = —4«{!\ ’

It is supposed that V27 is contmmus in the region of integ-
ration. We apply the above equation to the neighbourhood V
of 2 point P (inside the masses) and obtain

_ therefore

V. V”U= —4m or V2J = —4w%’

m being the mass of“ﬁ‘le volume V and 20/ a mean value of
VUin V. \\

When V * 0 containing the point P, and I:m-I? = r, the
denstty m\P it finally follows that

VU = —4rr,
Tlu‘s}}s Poisson's equation.

some neighbourhood of P
\mll see that the condition o
) continuous with continuous d

It holds if v2U is continuous in
In Chapter V, Article 3, we
f continuity is satisfied if 7 is
erivatives of the first order.

Art. 4, Stokes' Theorem

Stokes’ theorem i is,
simple application to
" theorem in the plane,

from a mathematical point of view, a
a curved surface of the divergence
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Let S be an open curved surface, bounded by a closed
curve C. Let S bavea continuously changing normal, and be
cut by any straight line, and hence by any parallel to a co-
ordinate axis, only a finite number of times. Alsolet Chea
dosed curve without double points and having in general a
continuously turning tangent. Choose arbitrarily a positive,

direction for the normal of S, and then choose a correspondi\ﬁ’gﬁ

positive direction for the boundary C, such that the pasitive
direction around C is counter-clockwise when viewed from the
positive side of S. Also assume that the surfag‘e'\S"may be
represented by a function of the form \/

_ z = flx, ¥}, AN

where f(x, ) is defined on the projectiorg& of S on the (x, ¥)-
plane and has continuous first partial’def'ivatives there. (It
has already been assumed to have awgontinuous normal.) Let
D be the boundary of T, or the pyéiiéction of C. Thedirection

cosines or components of the ufit normal 71 satisfy the relation
s
cos {n, x): cos (n )% cos (n,2) = of : J A
¢(\J dx dy

Now let X (x, y, z):be defined and continuous with continuous
first partial deriva}ives in a region of space containing S. On
S this can bgt{el:iresented as a function of (%, ¥),
\O7 X = X(x 3, )= g 9,
which }'S’}ontinuous with continuous partial derivatives in 7.
Fl' oitrthe divergence theorem in the plane, which is valid under
B present hypotheses,

- JJ éﬁdxdy = igdx.
ay

T
where the integral around D is in the positive direction in the

plane, Now § gdx = jL Xdx because the value of X on C is the
D C

Q
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same as that of g on D, and also
¥ _OX | 0X of 8K _ 3X cos(n,)
ay 8y g5 dy dy dz cos (n, 2)

and dxdy = cos (n, £)dS, since dxdy is the projection of 45 g

T. If we therefore transfer the integration from 7 to Siwe
get

AN

By cyclic permutation, we obtain two similac' {6t mulas, where
Y, Z are assumed to be continuous with first partial deri-

. vatives. By'adding these formulas, we'get Stokes' theorem,

| e

(a—y—-i‘g)cos,(ri,‘;é)]d.g = r(Xd:rc + Ydy + Zdz).
dx  dy/ N i

We can relax somfe, of the restrictive hypotheses on the
surface S, It is sufficient to suppose S to be composed of 2
finite number of pigces of the kind described above, which join
along continleus curves with in general continuously turning

tangents, (The formula (19) is valid for each such piece of S.

By the &ddition of these formulas, the line integrals along the
common ed

L BES ges between neighbouring areas cancel since these
i

A li:ll'e traversed once in each direction’ and the formula (19}
f0r t

€ entire area S results,

At 5. Cur

IfX, ¥, Zare the components of a vector F,
§(de + Ydy + 2dz) = d Fedy

is the integral already discussed in Chapter II, Art. 1. The
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right side of (19} is accordingly independent of the coordinate
system, so that the left side must also have a meaning inde-
pendent of the coordinate system. In fact, we shall find that

. 8z a8Y )
the integrand (— — ——) #e...L of the left side of (19)
ay dz
is the normal component of a vector. oA\

Let P : (%, 5, 2) be an arbitrary point of the field and #)an’
arbitrary direction there. Let S be a small piece of-surface
through P perpendicuiar to n, and bounded by thé&curve C,
satisfying the hypotheses of Stokes' theoremy~“Then the
theorem helds for this surface and curve, and By using the

mean value theorem, we find that ':"\\'
8z AN

(20} (-— - 6‘_1[’) cos (n, %) + (‘?-LY —-;Eg)cos {m ) +
dy 9z oz \gx

(a:f ax) JCF'df

— — — ] cos (n, 2= lim ==——— |

éx oy N se0 S8

where S has also been used to represent the area of the surface
S. The left member¢of (20) is independent of the shape of §
and C, heace the righbnember must be also. Again, the right
member is independent of the choice of coordinate system, so
the left membef ;s\ also. This expression is therefore dependent
only on the-fiéld F and the direction #72. It is, from its form,
the‘ COmgQielit of a vector in the direction of the unit vector f1.
This vegtor is called the curl of the vector field F, and is written

8Z 9Y X _oZ g_a_}g)_

.~\'~
W emlF =y F=(__-M ,
N/ X dy 8z oz ox dx By

Much simpler is the following proof:
By the expression (‘2? - 6_}7) cos (n, x} + ... a number is
ay oz -
i3

L H 1" : i az
-assoctated” with any direction 1, the coeﬂiments—a—; R
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atc. of cos (%, x), cos (#, ¥}, cos (n, 2) being independent of n,
Therefore a vector is defined (see introduction, abstract

. : oz 8y ;

definition of a vector), having the components —— — — . ;

ay dz A 5

That is the curl. R |
oA\

Stokes' theorem can therefore be written PR

Ny

2%7 2

&
which is independent of the coordinate sy3tem. Here Sisan
open arbitrary (but necessarily two-sidéd) surface bounded by
the curve C, and curl,F is the noymal component of cur.l F.
The line integral around € must b8 taken in the proper direc-

tion, counter-clockwise when. viewed from the positive end of
- the normal. ™

22) L[curl,.FdS = jf Fede, N
C

If the field has the praperty

(23) LN el F =0,
then it follows @m}(%) that
e §F- dr=0
AS
(o

for "ﬂlaﬂ%d curves in the field. Such a field has a potential
'(\C\hapter I, Art. 1). The vanishing of the curl everywhere

R in a;r.egion is therefore a sufficient as well as a necessary
~O t;ondm)mn for the existence of a potential (compare Chapter 1T,
\ } et 1),

$

. In hydrodynamics, where v is the velocity of the fluid, the
mtegral
l yady

s known as the “circulation” of the fluid along the curve C-
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If this integral does not vanish when taken around a closed
. curve, the fluid is said to contain a vortex, In this case,
curd ¥ is not everywhere zero. The name “‘curl” signifies a
rotation or vortex. ‘When the circulation vanishes around
every closed curve, or curl ¥ =0, the motion of the fluid is
said to be vortex-free. In this case a yelocity potential’Z™)y,
exists, which has the velocity as its gradient. "Vortex-free? -
fields in hydrodynamics correspond to “conservativg'f,}j&ce
fields. e\

at ¥ i

"\
Art. 6. Green’s Formulas '

Let the region V bounded by the surface 'S‘\sétisfy the same
hypotheses as in Art. 1. Let u(x, 3, £)¥and »(x, ¥, z) be two
continuous functions with continuous-first and second deri-
vatives in the closed region V + 3. 11 the divergence theorem,
let F = % grad », and since ¥

(24) W _ (a_v n+ 6_:{~n2_1’_gg ns) = negrad v,
mn dx ‘i«?‘y dz '

we get the theorem X\

(25) JJJ Q?EQET;’ + J-‘” vusvedV = JJ ug—v as.
TN 4 g "

By inter ’é}xﬁing # and v, a similar formula is obtained, and
by sub:eréction from (25), we find finally

426’\1”“]'[ S— =”( dv _ Qi‘)ds.
\31 J;(qu v7iu)dV ; ua” van

The identities (25) and (26) are known as Green's formulas.
The latter is more frequently useful.

Since only the first derivatives of # amd v enter in the
surface integrals, and these only in the direction of the normal,
?h‘-' hypotheses may be somewhat lightened. It is sufficient
if « and v have continuous second derivatives merely in the
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. . . - Ju dv . .
interior of the region V, while %, v, o :mcla— remain contin-
n M

uous in the closed region V + 5. To prove this, construct a
parallel surface S; just inside S at a distance k from it, so that,
S, liesin V. (We now assume that .S is free from singularities.)
For small enough h, it is assumed that S, does not cu itself,
and hence encloses a volume V:. Since V,+ 5, lie€ entirely
within V, we can apply Green's formulas to it ang:}bbtain, for
example, fs, '

[][ e = swaray = [ (u2e 5H)as
an " on
v L1 ﬂ\\

Now let the distance b between theparallel surfaces approach
zero; then from the assumed cdptinuity properties of #, ¢
ou_ ., dv '
—and —
on an &N
Furthermore, it is suffiient to assume that the second

derivatives of » and pate merely piecewise continuous in V.
Then Green's fo:jm\i}a\;' are valid for each of the subregions
into which the. sdrfaces of discontinuity divide V. Then by
addition of thésé formulas for the subregions, we obtain the
theorems for. fHe entire region; for because of the continuity of
the functions and their first derivatives, the surface integrals
cancelout over the interior dividing surfaces.

. 'WE will obtain some important conclusions from the
Green's formulas by specializing the functions u and ».

, we obtain Green's:ljiiéorem {(26).

\ By letting v = 1 in (26), we get

@n ” VudV = Uz—:ds.

v
By letting 4 = v in {25), we get

(28) ”_[ (Vu)dV = ”ug'-;ds - j ” wviadV.
¥ 5 v
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If % is a regular harmonic function in ¥, then since v = 0..
these equations become

(29)_ H‘ﬂdS-O

and . N
KO

(30) ”J (Pr)aV = J J' 2 ys >
v 4§ an A\

S

If # and ¢ are both harmonic functions msl&e the closed
surface S, then

9.\
(31) ” (u‘i'i - 93—") iS50
g an an A\

We can extend the region of ; vahdlty of equations (30) and
(31} for harmonic functions by ‘dropping the restriction that
the region V be finite. Slepose ¥ to be an infinite region,
bounded by one or moré\¢tlosed surfaces S, so that V is the
region exterior to the isurfaces Infinite regions with infinite
boundaries, as for “example the space between two parallel
planes, are not chnsidered here. The formulas {31) and (30}
remain valid fof“the infinite regions V described, if » and v are
regular at finfinity; the surface integral is taken over the
surfaces\s which form the entire boundary. To prove this,
let F be\a spherical surface of radius R about the origin, where
this-adius is so large that the sphere F contains all the boun-
“dary S in its interior. In the region Vi bounded by S and F,
4 is regular, and hence from (30),

_U (Vu}’dV=—U‘ ds+”a#d3

By introducing polar coordinates (spherical coordinates) on F,



66

ToE INTEGRAL THEOREMS

- o
U-ui—:ds -J J uj: R* sin 6d0de,

avJa

Crae. 11

we have

Now on account of the regularity of 1 at infinity, w % 0 and~
indeed R« and R? ? are bounded as K » . Henceit follaws

” K A
that the integral over F has the limit 0 as R » . .Si:?ailarly.
the validity of the formula (31) for the infinite f@gion V can
be proved. \\

On the other hand, the equation (20) isii{gtneral not valid
for an infinite region V. It was derived Y setting v = Lin
Green's theorem, and the function 1 is‘nbt regular at infinity,
Let G be any large closed surfaceMyhich contains the entire
boundary Sof Vin its interior, anddét ¥, be the space between

G and S. The function u is regtilar in this region, and hence
from (29), &Y

J "_f?eiéq-J’Ja-“ds -0,
8 s an

7\

where the normals\hn both S and G are pointing away from the

region V. By'réversing the direction of the normal on S, this
equation beéeofnes

"i'\ ou ou
QO —dS = || =24dS.
.(% .” on .Uan

N
d Therefore, if the harmonic function « is regular in the infinite

\ 'region v, thenjjgf dS has the same value for all closed
n

G .

surfaces G which contain S in their interior. The value of this

integral is ~4xM, where M is the limit of Ru as R » = (5¢®

Chapter II, Art. 7, eqn. (40)). This will be proved in the next
paragraph.
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Let # be a potential, whose total mass M lies inside the
surface or surfaces S; then « is regular in the region ¥ outside
S, and it follows from Art. 3 that the above integral has the
value —4rM as stated. But we will prove only in the next
Article that every harmonic function is a potential,

In the two-dimensional (logarithmic) case, the corres-
ponding formulas are valid and are proved in a completbl}
similar manner, We designate the formulas correSponclmg to

(25), (26), .. ., (31) by starred numbers, as (25*), efc) Thus, -
for example, ",

[{ 3 &b )
(26%) Jj(uv% - pV)dS = m( - —u #)ds,

J\ an B

3 < )
(20%) { %% 35 = 0, eth\
J an

Also the extension of (30*) and « (31”“‘) to infinite regions in the
plane can be easily ]UStlﬁed "However, in the piane the
formula (29*) is also valid Tor an infinite region; the function

v = 1 is here regular a"t\mﬁmty.
' Exercise: Verify (the formula (29%) by evaluating the
Integral, when # < %*— 3 and C is the unit circle.

Art. 7. Repregentation of a Harmonic Function as a Potential

In i?élf;h'\'s formula (28), let v = 1/r, where
..\'\ r = '\/(E — XY (y — ¥+ — 27, |
talgmg (%, 4, {) as integration variables and (x, ¥, 2) as para-
\'”‘mf:te]- 8. Consider first the case where P lies outside ¥. Tlen
?1s a regular harmonic function in ¥V, so that V% = 0, and
we get

o e[S

¥ f’m on
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If % is regular harmonic in ¥, this reduces to

1
1as  °\7
(33) ” —u—"/ 43S =0
X on O\
) 5
When P is in the region V, tlhe application of Greeh'
theorem must be made in a different manner. Since P ’{x v, 3)
is a singular point for v, it must be excluded from thé region of
integration. We therefore surround P by a sm kSphere K of

radius % and apply (26) to the region V* boundéd by S and K.
Afterwards we let £ 3> 0. We obtain

AN
_ 1¥]¢

([ 2= [ |10, 26

o 7 r an JAdn _

B

TN !

- "' | a(_)

< “ 1ouw N7/las
X r on an

\\s,. K

On K we hm{er = const.= &, and 2 = % gince the normal

an ar
is dlrec{c&l outward from V* and hence inward on K. By

mtr,@ucmg spherical coordinates on K, we find

RN 1a
m;\:" JJ«—-{%&S hJI-sde&d«,ﬁ-}Oask%»O
) f:

) 2

Y

since # is regular in V, and

1 | |
'.H.""“ig_f?)ds == ”%dS - —”u(h,s,qa) sin 8 do dé
[ | r 2

»>» — 411'“}7
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where up is the value of # at the point P, We have therefore

(34) dmup= U{ %g}: - ua_g;’)}ds—j Jj j -:- ViudV. |

¢\
If % is harmonic in ¥, we obtain the fundamental formulg’)

' o)

1 1 du 7 R

35 = — X u AL ases

0w [ s

A AN

which was likewise obtained by Greem\ This is the third
Green's formula. )

If P lies on the surface S, at a regular point of the surface,
then N '

~t:.:. 1
ST
1 AANou (r)
wmge S 5 —uy s
218

This is easily abtatned by surrounding P with a small sphere
K of radius & :c}ﬂling K, that portion of the sphere lying in
Vand S; thdportion of S which lies outside of K, applying
(26) to E*{e(région bounded by Ky and 5) and letting & + 0.

We. f.‘?ﬁ' that in the proof the int(ﬂ:gra.1 Jju(k, 8, ¢) sin 8d8d¢ is

\@ﬂ?fl only over the half of the unit-sphere.

From equation (35) we can at once see that: the value of
a harmonic function in the interior of the region V where it is
regular is determined if one knows the value of the function
and its normal derivative on the boundary., We remember

1t was assumed that u and gf are continuous on approaching
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the boundary S. Furthermore, equation (35) states that:
every regular harmowic function can be represented as the sum
of potenitels due to a surface distribution and to @ double
layer on the surface! (Compare Chapter 11, Art. 7, where this
theorem was mentioned.) A word of warning may be needed

here. 1t is not correct to assume that both the value ¢ha
potential function and of its normal derivative can hesarbi-
trarily prescribed on S, say as continuous funchom there 1t

will later (Chapter VII) be found that mercly. %ihe" u or &

n
may be arbitrarily prescribed on S. If orie’places arbitrary

continuous functions f and g in (35) for {c}gﬂ 8% this integral
an’

does indeed define a function w whigh\is regular and harmonic
in the interior of S. But in general“when P approaches §,

does not approach the value.of ‘f nor does g“ approach g.
P #

N -

Hwepute = —:- ‘1{7(25), we find
O

- . i
6 = —_ —_—
;4~I§§) +_§E a(") +.§E'i£_£) dav =

A gy dy a o

E] (i) drup
JJ i __f__ ds + 211'34}: +
an 0
3
a?;;rdlng to the cases where P is in V, on S, or lies outside
o

By using Green's'formuia (26™) in the plane with

Here —1— §3-‘ is th -
4 an & density of the surface mass distribution and 5~ 4

T
is the moment of the double layer.
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v = log %rwhere?’ =V -+ (v — 9,

and # a regular harmonic function of two variables, we obtain

(1 1 N\

¢ og-—) R

(37} 0=Tr ua——r-—llog(l)-?}f ds ¢
[

an v /] on N\

when P:{x, ¥) lies outside the region .5, and

Ny
8 { logi=
1 |' 1y 3u ( A )
= - - #
(38) Up 5 § *llog( r) n _\P\%—* ds
when P lies in the region S. If R}“iéé;:on the boundary C, ata
regular point, we get R H

N
N

. } J;J /) ‘r:';au 9 (log 17) ]
(38’). Up = ;-g 105, _r_)

L0 an ¥ onm ds.
&

'In proving (38}.14&116 point P is excluded from the region of
integration }J\ﬁg‘rﬁbiosing it in a small circle of radius %, and then

his ma%:tﬁ’approach zero. The factor 1 enters here instead

S . ”’
of fth!a,‘i— of (35), since 2r is the circumference of the unit
e il

“gircle,

\ )

~ Eqguations (35) and (38} can be differentiated under the
lntegral sign as many times as desired with respect to the
coordinates of P (compare the end of Chapter 11, Art. 4), since
P does not lie on .S {or C). Every potential or harmonic function
‘kf"efore bossesses continuous-partial derivatives of arbitrarily
kigh order through the interior of its region of regularity. This
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can be stated in ancther way, to bring out its significant
character: if a function has continuous second partial deri-
vatives in a region and satisfies Laplace's equation there, it
possesses continuous derivatives of all orders there.

Every derivative also satisfies Laplace’'s equation, as ig{ ™
easily seen, and therefore is itself a regular harmonic functm

We will now extend the fundamental equations (35f\and
(38). with the necessary modifications to infinite\régions.
For example, suppose that # is a logarithmic potem‘.laf regular
outside the closed curve C. Let X be a circle aant P (in the

region of regularity) of radius R large enough o0 contain C in
its interior, then

| (‘°g*)
upzlrlogl au .:..d5+

r an
c
‘:‘¢ a l 1)
"ig[logl'au— _...._.0gr ds
”*,\ 2z ] r on an '
§
Now
Ot 8 2
,§[0E—ﬁds = - RlogRJ 13.1‘d¢
'"\~:x I?' on 1]

g O

Beca'ﬁ\se R o bounded (Chapter II, Art. 7), it follows that
N du

\\;I}-log R'a—n"' 0 as R > ®; hence the limit of the above

integral is zerq.
Moreover,
1 a(log —)

2 W

__r' d(logr) rdo _1

dr 27

I ey

2r
j w(R, $) 5.
0
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Since # > ¢ as R » =, this integral has the limit ¢. = Hence
we finally find

1
log )l
(39) Hp=l§ log—l—ﬂtj—-u——————( ds + ¢.
21'rc J

r dn an

In the case of Newtonian potential, equation (35) holds un- .

changed for infinite regions, that is
1 P\
..,\
(40) u,,:iH LN IAYTS
dr |7 an 611

where  is regular in the region outside;the"closed surface S,
P is in this exterior region, and the rigrmal is outward from
the region and hence inward on S, \The simple proof of this
resuit is left to the reader. 2 }7:

If we multiply (40) by p =¥ 224 2+ z2and let"P:(x, y, 7)
g0 to infinity, it 18 easily fdi.lnd that

lim 2t = — d.S.
}Q\b J' an

Itisonly necessary tonote that p /r + 1 uniformly for all points
Qon 8, and that

' 3 1
Nl ) _ _ ter

~’ N on vt on
\Ghlshes like 1/p* with increasing p. By comparing with
apter II, Art. 7 (41), we find that

JJ ZdS = 4z M.
an
5

The formula (39) remains valid when # is not regular at

inﬁnity, but can be represented in the form u =M 108—1% +

N ¢
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where v is regular at infinity. Here u is said to have the
mass M in this case ¢ is the value of lim v at infinity. Itis
sufficient to prove that here also the limit of the integral over
K is ¢. Since the mass M is independent of the choice of

co-ordinate system, we can write % under the integral sign in {
the form

ﬂ=M10g—’lr-+U1' O
thus making P the origin,

Then v, ¢, and

~\

s 1 [, o

+ lim —. ikt
Ry o -"-'TFT l'(%\r 8

N\ W/
=0 lim n= ¢
'S it

At \8. Gauss’s Mean Value Theorem

P _ \ .
~\J _LEt P and a sphere K about P as centre lic entirely in the
\/ region where the function u is a regular harmonic function.

Let us apply the formula (35) to this region. This gives

J‘[ia_u _ua(%)]ds:

|
fip=__-
P 4y |

Klrc'm an J



ART. 8 MEaN Varug THEOREM 75

but (letting % be the radius of the sphere)

1 dn 1 du
Lﬁ?%dshzjjads“o
K A

from (29), and

s0 that )
(41) Wp =

S
2
=

A

B
e
7]
7
¢

w\,/
. ' 4 ¢ ’\
Srnce“’ dS = 4n#* we can state the mean'patue theorem: The

£ ON

wlue of the Newtonian potential at the centre of a sphere in the

region of regularity of the potentiahis the average of its values
over the surface of the sphere. . \ .

The corresponding theorem’ for logarithmic potential is

obtained by taking a circieﬁf of radius % about P, small enough

so that » is regufar an{{fna}monic in and on the circle, Then

“2) o up = L L.

_ From t{f#@" niean value theorem it follows that, except for the
trivial cageof a constant, a potential function cannot have a
maximem ‘or minimum value at any point in the interior of
thﬁsfégién where it is harmonic, and hence that the extremes
0h2 potential function must lie on the boundary of the region
of regularity. For example, suppose that the logarithmic
potential % were regular and had a maximum at P; then on
2 sufficiently smail circle C about P we would have ug < #p
for alt points @ on the circle, and the application of (42) give:s
4 contradiction. Also, suppose we assume an improper maxi-
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mum, so that %y = up holds for some region about P; then
the application of (42) to small spheres about P shows that we
must have tg = up for all points Q in some ncighbourhood of
P. Then from the analytic character of the potential function -
{to be proved in the next chapter), it follows that % must bea
constant through the region of regularity. The proof {0?5
Newtonian potential is exactly similar. QO
Hence, except for the trivial case of a constant:ftmct:on,
¢ potential regular in the region V can have neithéy aximum

nor minimum in the interior of V. NG N\
AN
R
N\,
N Y
o™
N
LA
N
»
7N L}
A\
7,

s
/



CHAPTER 1V

ANALYTIC CHARACTER OF THE POTENTIAL .
SPHERICAL HARMONICS .\“§’

Art. 1. Analytic Character of the Potential N

We will now prove that: every harmonic fuulion con be
expanded in o power series in the neighbourhood.of\any point in
_ free space {that is, any point outside the m producing the
potential, or any point in the region of regmlanty of the func-
tion); in other words, @ polential Function’is o regular analytic
Juncidon at every point in free space, s

We wil{ begin with the expa}gs‘mn of

) 1 )
"V —OCF G - G s

the potential of a unitithass concentrated in the point Q:(¢, ,{).
We will expand this in the neighbourhood of an arbitrary
point O, which «<anbe taken as the origin' Let

OQ ‘\/.W*—*l and OP =\/x2+y2+z2=k;
we seek' %&V&Iopment valid in a small sphere about the origin,
sy, gléé:éphere with radius k = —;- . We write (1) in the form
b L 1 N

7 Ve (et 2yt -] P 1-0

where

(2) q _ 2+ 2+ 20 B
. I 2

-‘_\_'_‘—‘————-\_

101 course, the point O must not coincide with @
77
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The development in the binomial series

@ (Q-gt=1+3g +£q=+... =X g’

ne {0

converges for [g| < 1. Here the general cocthcient is

(N g 13 @D Cml Oy
(4) Gn—(")( 1) .\

24...2n  2(nht
Setting ' Y
2
p =9 lxl + 1)’] + lzl + l . m'\\.
] i I
and noting that !%l =1,..., m =1, “{e;khr{!e
- N
6h B2 N T
= — - AP =
g =p< z +{=».’:, =g

Hence finally we have the exﬁafhéion

- (8) —i—=%(1 + oy LB )

2 24
R VNN I )
s S
where the déi?ﬁ Tepresent terms of the second and higher orders
n x, y,.g;;,
"}Q{efnains to be proved that the power series in %, ¥, 7 of

.“ﬁh‘e’?right in (5) is absolutely convergent for = L , 50 that the

\~\ Jearrangement is justified.

First of all we have

1 - 1 1-3
Sl -t
l(' ) 7 (1+§?+-2-—23’>2+-—-)’

and this series of positive terms is convergent for kb = —é— , sHnce

P < ECL, Moreover, wé can write
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1 el + i+l | &t
T(l_p) “,wl:l—i—%( —-——}—-—-—-H—"I"‘E)"i"
) ﬂ( LYt ] = X bmar lo™ |y 18l”

(mymr=0,1,2,..)

where the &,., are obviously positive, This rearrangf:r{iénf
can be made, since all terms in the brackets are positive. “And
the power series in |x], ||, lz] is of course conyérgent for

p=l. A
8 4
If we write (5} in the form N
{8%) 1.y Tmar :gct"j»\:z‘:

r

it is evident that this series is dgﬁﬁnated by the series on the
right in (6) since the two series#re derived in exactly the same
way from (1 — ¢} and (1-="%)"} respectively, and since $ is
derived from ¢ by replaeing the terms of g by their absolute

values and then rigklz';éing %—l s l%i ; I{—I by 1, which is not
smaller, The;:ef;)re indeed |Gmns] = bouny for all m, n, and r.
Accordingl;s\’(si, or (5%), is certainly valid for b = é— . The
converg\g@é is uniform in the sphere 4= <~ for the domi-

“aﬂt Series in (8) is uniformly convergent. This last statement
'"*fOlIOWS from the fact that the series in {6) is dominated by the
convergent series of constant terms

2
‘%‘[Cu+51-;-+02(%)+---]'

The expansion (5%) is, of course, identical with the Taylor
expansion; thus
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1
m+n+r| *
()

Cmnr =
minlrl  9x™@y™I8" |(x. 5.6 =10, 0.0)

The coefficients are functions of £, 5, ¢. Such an expansion is N

- possible in only one way, as is shown in the theory of powe
. € N\
series. A\

The expansion of the potential due to a distribution,

wellj2av 49
r \ ¥
v

where p is bounded and integrable, is now’:\'\éry simple. IO
is an arbitrary point of free space (henc'e}m’tside V), which we
take as origin, and if J, is the small.eéﬁ rdistance from O to any
point Q of V, then the expansiont(§) is certainty valid for P

anywhere inside the sphere Sof “Centre Oand radius ;—1 , and the

~ .series converges uniforml¥ for all points P in S and all points
@in V, because it has&ominating series (6). On account of
- this uniform convergence, we can multiply the series (5) by #
. and integrate tgrijnwise over the region V. We thus obtain
a power seriesekpansion for u, which converges uniformly in S.

- In a}l\’@téctly similar manner we can prove that the

-'New:rp}i'.in potential due to a surface distribution, J J f:.r‘ a3
. cai'rbe expressed as a power series. 5
\» For the potential of a double layer, we need the develop-

‘ment of
| (%)
—r/

+ Where the point @

. .- B is variable when calculating the derivative
‘10 the direction 7.

Now -
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o) (. oD

= .4

an 9t an ac on
1
(5 )ae ..
ax on ’ Ko
since O
‘2{ = e ?L (M’}‘.
3k ox' T O

. . 1 . ~\
But the three partial derivatives of-—-wlth respect to %, v, 2

can be expanded in power series. For exa,m\ple by differen-
tiating (5), we get \‘ ’

:
()
— =—(c1+ 2czg+3c:q’+ )é,:c

and the series in the parentheses is absolutely and umformly
convergent for all points PAnS and Q in ¥, since it is domi-
nated by the convergent(seties (independent of £ and Q)

o +2cy\(\’) + 36 ( 7)’+...

And after mulfg@}ymg this series by
~Y 19 _2¢-x) 1

O T 3x T
the re\snh is still uniformly and absolutely convergent. The
leatkahgement into a power serfes in x, ¥, # can be justified

3
as‘above for—1~ itself,
: r
Naturally it is possible to prove in asimilar manner that the
higher order derivatives of 1 can be obtained, by termwise
o

differentiation, as absolutely and uniformly convergent series.
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Thus we find that

on

can be expanded in a power series, absolutely and uniformig ®
convergent for all points P of a sphere about the origin andall

“points Q of the surface carrying the double layer; then“by

" Ny .
termwise integration, we obtain the power serics, kxpansion
N

for the potential 7,
( 1 ) ""\\
d -';' \ ¥

of a double layer. N

It is thus proved that any,_Newtonian potential can be
represented by a power seriesbut since we proved that any
harmonic function is a potegtial function (Chapter 111, Art. 7?,
it follows that any regulat solution of Laplace’s equation is
analytic (representablesby power series) in its domain of

regularity, & }
The serjes exp}nsion of a harmonic function « has the form

(7) “"%’E'Cﬂn'xﬂyﬂg', (m, u, r = 0, 1, 2] 3’ .. ’)

.o\. - 1 am+n+r“
Q%= minly! 953y | b n=0.0. 0
ents are uniquely determined.
can be differentiated termwise arbitrarily often.
pment is to be about the point (xo, yo, 30) in the
gularity of the function, the expansion is a Taylor

and the coeffici

domain of re

series in x - X0 ¥ — ¥o, 3 — 3.
For the logarithmie potential, a power series expansion of
the form _

)

% =3 Cunx™y",
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sbout an arbitrary pont taken as the origin, is obtained in a
gimilar manner.

From this scrics development it follows that: if @ function
is harmonic and regular (n V' woud vanishes at all points in a sub-
region V1, then it vanishes identically over the whole region V.
The proof is by the process ut wnalytic continuation, often used .
in function theory. ‘Thus, vt ¢J bea pointin ¥y and £ an ar-g\
bitrary point of V. Construct a chain of circles from O to AN
such that each circle contains the centre of the next ong?
Now, by hypothesis, 1he scries expansion vanishes idetically
in the first circle, and therefore in the seconds\hird, etc.
Hence the potentinl nust vanish at P O

If two potentiuls ;e ilentical in value oveg’a subregion of
their commoen region of repularity, they aru"i\;h.-ntic;ll over the
whole of this common reprion, since tlmir.(!i[:ﬁ!’rcncc must vanish
there, If a potentinl is constant overlportion of its region of
regularity, it is constant over the albole region.

~

At 2. Expansion of ! in{@‘fuherical Harmonics. Legendre
Polynomials r\'\ -
We will now carray through the expansion of 1/r in a modi-
fied form, Let (&:i:g?ﬁ)
opP ='\/§+ yi 2t = p, Ob =Vttt =,
Y PV -t =
?_Ind”iet"?: cos ¢ where a is the angie between OP and 5@_
L 2l = 1. We will expand in powers of p. We have

T o S
ol
—— = cos f cos 8"+ sin @sin 8 cos (¢ — ¢'),

*The firge circle les

) entirely in V, and its centre is O, the last circle
®ohtains P, For space,

one has to use spheres instead of circles.
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P—"_Q

0 \
Fi. 6 "‘Q

where p, 6, p and J, #', ¢ are the spherica! coqrdfnates of P
and @, and also

) 1= 2plu + pt, N
go that \‘
1 1 '
() = 12)
2 :u p’
Let . =202
=37

then from (3) we havekfo} |q| < 1,
W (B -l
This series i ig dommated by the series

: x'\ - 2p "
o* z:cm( +m)
A IR
(smce\‘lul =1), and this dominating series converges for p suffi-

-\\caently small; for example, for p < —‘ , since

2p 3 _ 8
(l_+ P)<T<T<1
0“3 may therefore rearrange the dominating series in powers
of p, because the terms ; in parentheses are positive, and finally
(mmpare Art, 1} the terms in (11) may Lkewise be arraﬂged
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in powers of p. This gives the series, certainly absolutely

. i
convergent if p < e

B Qpu o -4 _
(12) (1 - +—ﬁ) =

2 3
Polu) + Py(n) - (.';.) + Ps(u) - (igl) +..¢5)
O
if we denote the coefficients, which depend on %, by~ R,;fu)
In order to calculate P,.(u), we expand the general\tErm from
(11) \

(g e 2T ()
I i E=0 k { I
hence \,

(117

2'0“ pg)—-} o\ \J
R R
! e )

< (2mj:!f’(m) _— ;.s_k(_p_)”‘fk
§( 1) zn\z———*—m(mr]z 2™ Ry ;

From these terms, W\z{mst select the terms in T which have

u[VJB/—'\'

the same exponentn,/i.e. those for which m+k norm=n—%g,
and add them tOﬁether This gives

2n — 2k)! — R\ pn 28 n—
P(u)-_g( 22»(2k(( )k);)2( kb )2 Fur T

Whﬁmk tuns through the integers @, 1,2, ... upto [§ ”I ¢ The
QEfﬁ(:lent Oy oz of 4"~ % in P,(u) is ﬁnally

k I

by = 1 (= 1)"@n—28)! :in particular, b, = (2ﬂ) 2

: 2% (n— k) k!(n— 2k)! 2"(?:')
Thus '

*{3n] meand the largest integer contained in 3, e.g. [39] =4
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‘ LW (- 1H2n 20! Lo
13 Pa(u) = — w" T
(13) ) 2"k§:ok!(n—-k)!(n—2k)!
Hence P,(«) is 2 polynomial of the #nth degree inu. [t isknown
as a Legendre Polynomial. The polynomials with n even con. ~

tain only even powers, and those with # odd contain only edd
powers of #. We have in particular (\)

(13%) Po(w) =1, Py(u) = u, Palu) = § (1 — ![i)l‘\
Ps(ﬂ) = % (uﬂ - %ﬂ)s etc. N 3

. . . R 4% ..
For later convenience, we will give a different derivation

of the Legendre polynomials. If we sg{\—g- = o for brevity,

we have to expand the function (negletting the factor 1/7)

(1 = 2up + ).
- The polynomial in the parenj:hlééié may be factored; we easily
find that \\

*

(1 — 2uv -';7}'2)"='(1 — ) (1 — e*'9),
since 2u = 2 cos o '=‘=j?"'+ e~*. Hence for |v| < 1, we have
(12w +v) ,=\(‘1\-"»'~‘3"")'.i (L —pe~=) .
.“:#(CU+€108”+CQﬂ282ni+. } .)(co+c!ve_“’+. L)
’=.:e~0! +Cl101(8“+8_“)ﬂ+[6962(82"‘ +e—2u;) +612]E’2+- .
\\ =¢@+(2c0c) €08 a)v + (2eocz cos 2a e -
_ p\lﬁﬁrison with the series (12) gives

:'\';"P“(u) =cg, Pylu) = 2c4c1 €05 @, Py(u) = 2¢y, cOs 20 + e
3 Y “and in general
(14)  Pa(u) = Pulcos a) = 2e4c, o8 110 + 2e16n_y cOS (1 — 28
+ 2c3tnscos (n — 4o +. ...

1f"cn‘ n even, the last term is (c;,)?, and not 2 (c;,)% 1nthis
_' ormula tl}e Legendre polynomials with argument cos a ar¢
expressed in terms of the cosines of multiples of a. The coeffi-
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cients of these sums are all positive; hence the maximum value
of |P,(u}|is obtained whena = Qora = r, thatis, whenz =1
org = —1. Butforu =1,

1

1 —9

(1 — 2uvw + t) 1= =1l+o+ot....

Frem this it follows that P,{1)= 1. In a similar manner,xtt\
is found that P.(—1)=(—1}" Accordingly, when u fgre-
stricted to the interval (~—1, 1), {Pa(%)| has the maximum
value of 1 for all #. This fact will be used Iater.\l*

We will pr ove (in Art. 6 and Exercises of\this Art.) that
the derivative (;( ), which Is ev1dem;l)?\\d polynomial of

degree # — 1, can be expressed in; terms of the Legendre

polynomials up to order # — 1, by; the equation

aPy(u)
du

{15) ={2n — I)P,l_;(‘u) + (27 — 5)Pys(n) +

(2?3 ~— Q)Pn-—ﬂ(”’) ‘I""

AN
If we accept this { org@a’at present, it follows that | ——| also
reaches its maxjfidm at % = 1 and z = — 1, and that this
maximum is (2t 1)-+(25 — 5Y+..., hence certainly <nt
ThGI’EfOFe;Kﬁ" <n?in the whole interval (—1, 1).
"
By differentiation of the above identity, we find
' &P, 4 P - aP; s
- » +.o.
\ o = (28 — 1) + (2n - 5) T
80 that (g%;i(_z.&_) < niin the interval =1 = =1, Similar
u2

bounds are obtained in the same manner for the higher
derivatives.



B8 SpHERICAL HARMONICS

CHar. [V
‘From (10) and (12},

. 1 [+ =] pn
(16) ? =ﬂ§0 Palw) z'ﬂ:]_'_l
is certainly valid for £ < 1. The general term of this series
i 4 O\
: . / 0\ -
(17) Pn(“) Ja = Folx, v, %) R \.
isa homogeneous polynomial of the nth degree in Q\y. . For
P.(%) contains only the powers %”, "2, u*T4\1 . and hence
from (8) contains p only in the powers p™* 'p\”'H .... Hence
P.‘(u)p contains p only in the even powe Sp\*, o2, p%, . . . . Hence
P.p™is rational and integral of degree¥% in x, ¥, 2.  Moreover

" uand hence also P, (u) is homogeneoUs of degree zero. Accord-

ingly Pa{u)p" and hence also F, 2, v, 2) are actually homo-

geneous of degree 5. The coeﬂi(:lents of these polynomials
depend on &, 1, . N\

If we arrange m\

8) ¥0+F1+ FFut.

aocordlng tot:he powers and products of %, ¥, z, we obtain again
the sene\a’\development (5%}, which is necessarily the Taylor
smes\ we have proved before that this converges in a suffi-

.mentlysmall neighbourhood of 0, say for £ 7 < %—

The series (18) converges in a larger region than (&%)
Since |P.(#) | = 1 for |u| = 1, it follows immediately that: the

series (18) converges qbsolutsly for £ T < 1, that is, for all potnis

P in the interior of a sphere about O of radius OQ =1, and #
converges uniformly for any closed region lying inside this sphere.
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When-';— < —;‘:, the series (5*) for 1 may be differentiated
r

termwise arbitrarily often, This is pérmissible also for (18),-

at least for—?- < élw, since the combining of powers and pro-

ducts is naturally permitted. Hence, if one forms the differ-
xS

ential expression of Laplace, it follows that PR
1 N
Ve =0 =9F+ V4.V, +..
y
m\

For » = 2, v*F, of this series is a homogeneous poly—
nomial of degree #—2. By separating each ternt of this series
into its parts, a power series in x, ¥, £ is obtdined. Since this
series convetges in a certain sphere abbut’the origin and has
the value zero there, all its coefﬁments tnust be zero. Hence
all the terms v2F, must vanish, 5Q that

(19) Van(xrys'Z} = 0.

All terms of (18) are therqfore solutions of Laplace's equa-~
tion. A homogeneous¢polynomial which satisfies Laplace’s
equation is called a, spherical harmonic. The degree of the
Folynomial is the ordér of the spherical harmonic. The func-
tions F, (x, ¥ z) Fetined in (17) are therefore spherical har-

monics OK“der #, and (18) is the expansion of —1— , that is of

A
the po.te_ptlal of 2 unit mass, in spherical harmomcs.
o N .
<\:]t is now not difficult to obtain the expansion of the

derivatives of 1 in spherical harmonics. The termwise dif-
r
ferentzation which is certainly permissible in a sufficiently

small Sthere about the origin, gives for the derivative with
tespect tg x :
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(3)
* Lt = X e — (Palu)p”).

(16%) Y 2 l“ W3 ( .
But N
2 (2 =) £ = P 5 B
dx . ol R\

and since Q \J
N
L? =1, =4, =1, Pa) =1, (P u(t&]l"‘”n",
p
li (Pylu)p") | = mep™ ™t - mto™ 4 mgiTO= 3?:29"“1.
9x
The series of absolute values of the terms of {(16%) therefore
has the dominating sertes ) ’.:k .,
pfl 1
S v Jn—t

(of -constant terms) vghf&} converges for——l— < 1. Hence the

series {16%) comrerXs absolutely and uniformly in the same
region as (16} dves. The expansion for

N/ _
O L
T
4 . \ 3% !
an{l’of course also for
v ( ) ( )
' and

ig therefore vafid in the same region as (18). The general

d . .
, term ™ (Pulu) o) = (1;'-‘ is a homogeneous polynomial of the
%
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(n ~ ljst degree, and hence is a spherical harmonic of order
n—1, since it obviously satisfies the Laplace equation.

It is not difficult to show that also the higher derivatives of -

.ma.y be expanded in the same region in spherical harmomcs

obtained by termwise differentiation. For instance, the®),
second derivatives of the expanszon (18) are serles havmg the .

dominating series o ntt— o” (as:de from a constant factOr)
| a R

Exmtasrs \

L. The recursion formulas for the Legendre@zdynommﬁs

: -\
: By settmg-l- = p in equation (12) (Art 2) we get

(12%) flu,9) = (1 — 2vu 402~ —(P(s(’u) AoPi(w) P Pe{u) ...
. Differentiate with respect to assummg ]v] =g<L

af wew 2
9 (]'_ 2yu+ N Rl(ﬂ’) + 20Py(u) + 3¢ Ps{ﬁ) +..

Termwise dlﬂferentlat‘iq}l is permissible since the series on the
right converges unﬁormly {also absolutely) in v for |of S ¢

{remember [P (u);ﬂl) Accordingly {1 —~2!m-|-‘v”)"'lr ={u—0)f

or (\L»— . + o) (P1(u) + 20Px(u} + . )
. ';. 1 — 0)(Po{n) + oPi(u) + v*Paln) + .
Wl‘ll;e ea(',h side of this equatlon as a power series in ¥, compare
¢ coefficients of equal powers of v and find
Q) (1 + D) Ppys() ~(@n + DuPalt)+ #Prs()=0
Differentiate (12%) with respect to #

Vo , , ,
b " Qg oy = Do) ePa) 0P

Q.



92 SpuERICAL HARMONICS Cuse. IV

The series on the right converges uniformly (alsc absolutely)
in « for ju| = 1,if || is assumed to be <1 (recalling that

|PL ()| = n2).
‘Therefore termwise differentiation is justified. Accordingly

f f 3
3 3 \
(u—ﬂ)a—“”ﬁ .'\o\..'\
or (% — v)(Ph(w) + 2P (1) +o2Py(u) ...} =
o(Py) + 20P3(w) + 302Ps(w) + .. ). o

From this find \\

(B) uPl (1) — Pr_ () = nPo(a)>
Differentiate (A}, replace P,_,{(u) bywit\é';%']uc in (B) and find

(©) Pry () = uPy(u) = (0P 1) Prln).

Infer from {B) and (C) \°*

(D) Plyi(w) = Py y(\= (22 + 1) Prln).
Write # — 1 for # in (C) 3%
(C% Pé:'_ uP,_, = nP.1
eliminate P,,_,(x) Between (C*) and (B), and find
- (E) (1= ®YP (1) = nP,_,(u) — nuP,(u).
2. Infer,f8nY (E) and (B) the differential equation (27) of
Articlg 5{)}! differentiating (E) and eliminating P 1 (#)-
3\E}i}hinating P(u) between (C) and (B) we obtain ’
P:'}l =@u4+ )P, +P. _,or P,=(@2n — )Pu1t+ Pr-z
~~From this infer equation (15).

N

/ - . L(@n—-1
\ ) 4. Infer from {13) that Pa(U) — (_ ].)ﬂ 1-3.. ( " )
when # is even, and Ps,4(0) = 0. 2.4...{2n)

Art. 3. Expansion of the Newtonian Potential

F.rom the expansion of (16) and (16%) it is not difficult 1
obtain the expansion of all Newtonian potentials in spherical

;
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harmonics. Consider first the potential of a body U = “-J‘ ; av

where the density r is again assumed to be bounded and integ-
rable. Let O be an arbitrary point of {free space, taken as the

origin, and let & be the smallest distance from O to any pomt D

Qof V. If we take a sphere Fabout O of radius & < £, thei
the series (16) or (18) isabsolutely and umformly convergent for
all points P of F (i.e., p =<k)and Qof V (i.e,,l = h)rs:nce it

has the dommatmg series of constants (rememb,e(mg that -

P =13, — Z (_i—) . Hence (18) may be 1Qt§grated term-

INY
wise after multiplication by 7, and we get~~\"

{20) Uz'[”_dv GU-{-GI-;P +G,,

Galx, 3, 2) ﬂﬁjfﬁnczv-p ”_]"ff” av,

where dV = dedndr. \

The series (20) i ip\absolutely and uniformly convergent for
all points P of Fy 1.e for all pomts of any sphere about O
which consists ,Q'ltirely of points in free space.

Evidently"(, is a homogeneous polynormal of degree # in
¥ 3, 2, since'this was true for F,, and integration with respect
tothe | integration variables £, 4, ¢ does not affect this property.
MDI&O\’GI’ it is evident that (20) may be differentiated under
ﬁ“% mtegral sign arbitrarily often with respect to x, 3, % the
integrand being everywhere bounded and arbitrarily often
differentiable. 1t follows that G, satisfies the Laplace equa-
tion since F, does. Hence Gy is a spherical harmonic of
order 4,

In a similar manner the potential of a surface dlstnbutlon
can be expanded in spherical harmonics:

¢\ .\
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(21) ”i}dS=Ho+H1+...+Hn+....

5
: Hﬂ(x! b e Z) = p" J-J UP“'\“’) ds.
&

IEn—t—l

The series is absolutely and uniformly convergent in any sphere
about O which contains only points of free space. & M
From equation (18*), and the analogous dexelopn‘lents of

"7 and rz, \

ay dz
AY;
it is evident that the potential of a dedble layer can also be

expanded in & series of spherical heu*momcs, which converges

in the usual manner,
a(l)
(22) Hpji—ds =L¥Lit...+Lnt. ...

s \
A o [ [ BP0 4
\\ Lniitiy.2) =0 ,”I"H’]' an

N\ )

In the diﬁerp(i’fié;cion af— , Q: (&, m, ¢) is, of course, the variable
) n

W

N

point. ~The above expansions (20), (21), and (22) can be
dlffeéﬁhated arbitrarily often in their regions of convergence.
Th@ derived series are convergent in the same regions and

‘tepresent the derivatives of the corresponding potentials.
Having completed the subject of expansion of potentxalS.

we can consider the expansion of any harmonic function in

series of spherical harmonics. However, it is perhaps better

" to postpone this development and base it on the Poisson integ-

ral (Chapter 1%} as this leads to an elegant and simple repre-
sentation,
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Art, 4. Derivation of the Spherical Harmonics in Rec-
tangular Coordinates from Laplace’s Equation

As an illustrative exercise we will obtain the spherical har-

monics, to which we were led in the series expansion of " and

- the potentials, in cartesian coordinates from Laplace"s:\
e \ 1

equation. . ¢

Since this is a linear homogeneous differential qu{iﬁibn, a
linear combination kyu; 4. . .+k.u, of solutions u\is a solu-
tion, This solution is linearly dependent on gz, . .+ , %n.
It is, of course, sufficient to find the lineacly" independent
spherical harmonics. Since spherical hal{ﬁO\l{CS of different
orders are obviously independent, it is-Oftly necessary to find
the linearly indepentdent spherical hafmonics of arbitrary
order #. A '

We have first as spherical hafionics of order 0 the function
1, and for order 1 the functjon®x, v, 2. For those of order 2,
we form the homogeneous{pelynomial

¢ 8J
Fz(xu ¥s 2.') = Clxzsk\c;yz'i' 6322+ Cays + 2249 + G,

whose six terms agefinearly independent. Now
A
O VIR = 2(01+ 6+ Cg).

O _
For V2IF, %0, it is therefore necessary and sufficient that
ok Gies= 0. If we eliminate ¢s, we obtain

\ ;\ Fg: €100t~ 22) + co(9% — 28 + cay5 + co5x + Y

aaq this polynomial with § arbitrary parameters is a spherical
harmonic for any arbitrary choice of the parameters. Hence
we have exactly 5 linearly independent spherical harmonics of
order 2: :

xP— g% 2 g, xy, ¥z, BX.

_ We proceed in an exactly similar manner for any order #. In

Q.
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Chapter 1X, Art. 3, we will prove that there are exactly 2n + 1
linearly independent spherical harmonics of order n. We now
give a method of determining such functions. The general
homogeneous polynomial F, of the nth degree in three inde-

pendent variables has (1‘}-—11-——2{”% = m [inearly indepen-

O\
dent terms (number of combinations with repetitions of n'elé-

ments of three kinds). Let these terms have the coefﬁments

€1, €3 ..., tm. Now the Laplacian VEF of this "polynormal

' -2
2

P, 1s of degree # — 2, and therefore has . = § terms,

linearly independent. The coefficients bl,x&': .., b, are linear
homogeneous combinations of the capstants ¢y, ¢, ... -, ta
For V2F, = 0), it is necessary and sufficlent that all the coeffi-
cients by, bs, .. .., b, vanish. Weget therefore s linear homo-
gENegus equatlons for the m coefficients for ¢;, Then s of the
numbers ¢; can be expressed as linear homogeneous combina-
tions of the remammg m s, which therefore remain arbitrary.
1f we eliminate in thm\manner s of the coefficients ¢; of Fa,
then £, becomes a'sphérical harmonic of order #, and contains
m — s = 2n - P\arbitrary parameters. The polynomials,
which are multiplied by these parameters, are the desired
linearly md{pendent spherical harmonics.

EQEH’LE order n=3. Herem=10, s=3, hence m—s=7.
. \ NP = ot caxty 4+ cox’s 4 eyt s xvs +
N e otk eyyls + coyg - ot
N Show that
Fa=cy(x*~3x®) +cy(x2y —y2%) +c5 (% — y7) +ce(2y® — %)
HesxyE ()P —392) +c10(2 —3y)

i a spherical harmonic with 7 arbitrary parameters, and hence
contains 7 lme"“'ly mdepeadent spherical harmonics of order 3.
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Art. 5. Surface Spherical Harmonics. Their Differential
Equation. Associated Functions

Laplace's equation in spherical coordinates ist

du 1 3
23 Vz.u = ( 2 .__.) —_—
@) g dp p2sin® @ Ag?

ot sin & 98 a8

For these coordinates, ~
x=psinfcos¢, vy =psinfdsing s =p~c.(55'19.

If Fy (x, % 2) is any spherical harmontic of order », it can
clearly be written in the form \\

(24) Falz, 3, 2) = p"Aa(8, 0

where 4, depends only on ¢ and 8, angl.jﬁdéed is a homogeneous
polynomiai of the n-th degree in the trigonometric functions
sin # cos ¢, sin 6 sin ¢, cos 6. Thefunctions 4, are called sur-
Jace spherical harmonics of ordern. The equation (24) may be
considered the definition of(sutface spherical harmonics. The
entire set of surface spherical harmonics of order  is obtained

ol
7%
< 3

by expressing the spherteal harmonics of this order in spherical

coordinates and diwiding by p". We find:

order 0: 1 ::’\

Vo) . .

order 1:/8i' 8 cos ¢, sin @ sin ¢, cos 4, _ .

order/2:\8in% sin 24, sin®d cos 24, sin 26 cos ¢, sin 20 sint ¢,
_ _j:'; i—3 cos?, ete, : :
The functions A4, satisfy a linear homogeneous differential
equation of the second order, which is obtained by substituting
(44) in (23) and then dividing through by the common fac-
tor "2 which occurs in every term. This gives
—H-h__* *

A derivation of this equation is to be found in W. F. Osgood's

Advanced Caleulus, New York, 1925, page 421, and in other books on ad~
Yanced caleuhys,

O\
! P- (sin 05?—1?‘)=0. a\



S
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“lar points# =1 and ¢ = —1.
linearly independent pariicular solutions. The Legendre
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(25)

6;.44“ . af.. 3?)+n(n+1)sxn”BAn=0

as the differential equation of the surface spherical harmonics of
order n. We can therefore define the functions in this manner;
they are those solutions of (25) which can be represented s
homogenecus polynomnals of degree # in the argumchts
sin f cos ¢, sin 8 sin ¢, cos 8. >

N

If a surface spherical harmonic B,(#) of the nth« order is
independent of ¢, and therefore a function of 60ty it follows

_ from (25) that it must satisfy the ordinary differential equation

(26) g’a(sin s‘?ﬁ) + 5 + 1) sit&'}rsﬂ —0.

From (17) the Legendre polynormal Pn(cos e) is a surface
spherical harmonic, where from (8),

- o8 a = ¢os B cos 6"+ Sm 0 sin 8 cos (¢ — ¢).

It contains the two vatiables 8, ¢ and the parameters #, ¢/,
which, of cnurse are”é{so spherical coordinates of a point. 1f
we take §' = n €0s a = cos 8, and Pa(cos §) is only depen-
dent on 4. Th‘e.re ore it must satisfy (26). If we make the
substltutm:\cos 0 = u, then (26} takes the form :

(27 ~\~\((1 u?) h) + n{n + 1)P,

_ ;':; =(1 = #)Py() — 2uP, () + n(n + 1)Pa(u) =

ACCOfdmle- P,{x) must be a solution of (27). This ordinary
linear homogeneous differential equation of the second order
is known as Legendre's differential equation. It has thesingu-
It possesses, of course, tWO

polynomial can be taken as one of these; the other is dis-

continuous at the singular points. This may be shown it
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the following manner: let @,(u) be a second solution of
{27} which is lincarly independent of P,. From

(1 = w)P,) + n{n+ 1)Pa= 0,
(1 = 1)@ + n(n +1)Qa=0,
it follows by multiplication by @, and P, respectively and'\
subsequent subtraction that . O
Qulll ~ @) Py = Py((l = ut)Q) = 0,
or - {0~ )0, P, = P,Q0} =0, (O
so that by integration N4

; ¥ [ A\,
—_— = ¢ \
QHPN Pern - “?"o\;.

where cis a constant. This constant dasnot be zero, since if it
were zero, we wauld have \\ '

XY

P, 0, NN

B, " g, %0 Pl =aQ,)
where ¢ is a constant, gﬁa‘Pn and Q, would not be linearly in-
dependent. Hence itfollows that Q, is discontinuous at % = 1
and 2= —1. The setond solution is known as a Legendre func-
tion of the second @ind (see Art. 9). *

Since a sypface spherical harmonic independent of ¢ must
satisfy (26) r (27), and since (27) can have only one poly-
nomial gohition (except for a constant factor), it follows that
the L\égéndr e polynomial P, (cos §) is the only surface spherical
hatwénic of order # which is independent of ¢. .

In order to find further solutions of (25), we seek to satisfy
this equation by functions of the form

(28) A8, ¢) = T(#) 3(¢) -
where T and & are respectively functions of § and ¢ only.

Inserting 7% in (25), the resulting equation can be easily put
n the form
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sin #(sin 87") +n{n+ 1)sin?8- T &

T 3
Since the left member of this equation is dependent only on 8,
and the right member only on ¢, both sides of the equation

must be equal to the same constant. We call this constanp?,

and obtain o
(29 sin 8{sin 8-T')' +[n(n + 1} sin2 — »2]T < 0' Dy
and 3" 4 2 = 0. e\

For A, to be a surface spherlcal harmonic, and\hence single-
valued on the unit-sphere, it is necessary thit & have the
-period 2, se that » must be an integer, alﬁi‘wc will therefore
make this assumption. Moreover, the‘re is o loss of gener-
ality to assume that » is not negatwe For » = 0, {(29) be-
comes {26), and we obtdin again »P,,(cos ).

Let cos § = 2 and T(ﬂ) = iﬂ(u) in (29), which then takes
the form

(3[1) (1 —ub)w'(u)— 21{:» (u) + (u(n +1) — —-—-) w (1) =0.
u

This eguation has‘a}solutlon
) wi ST PO, PYw) =L,
where » sihmted to the range 1, 2,3, ..., n. To prove this,
d1ﬁe1:§{taate (27) » times, which gives
(1 = w) P D (5) — 2uly + 1) PCT D (0)

_ +n(n 4 1) — v(v+ V)PP (u) =
\ ) Let the sth derivative PP (4) = F(u), and this becomes
=) P (5) = 26+ NP (@) + [n(n+ 1) — w(v+ DIF @) =
- Maow (/13 —u’)'F(ﬂ) be substituted in (30), it is easily seen
that this equation is satisfied, The notation Pg{u} is cus-
tomary for w(u). We wtite therefore

@ VIR = B, (1,200

:'\
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The functions P4 () are called the associated functions, One
" has to distinguish P4 (1) from the vth derivative

P,(,") (u) — d Pn(u) .
du’
It is easy to see that the functions O\
P {cos 8) cos v and P (cos 8) sin ve, O

which certainly satisfy (25), are spherical harmonics ofsorder n.
For PY(cos 8) is a polynomial of the (n ~ »)th dt:gr;ee of the
form

a9 cos™ "8 -+ as cos™ 20 4 a, costV R -I-
and if we multiply the second term of this by~

cos*? -+ sin?f cos?p + sinﬁﬂ sffl?q& =1,

the third by the square of this expressmn, etc., then PY? (cos 6)
becomes a homogeneous linear combmat:on of degree n — v of

the three arguments mentioned aartier. Moreover, remember-
ing that 42 — 1 = - sin?, we “Have from well-known trigono-

'metnc relations that ,m\

sin'd cos v = sip%{éos”d: - (;) cos” ¢ sin®d -+ .. -)'

sin"sin ¢ = ﬁq’”é{(’{) cos”™ ¢ sin ¢ — (g) cos™ ¢ sin’p+ . . )

gree ¥ in
cos vé
the arguments sin §sin ¢, sinfcos g.  Thus P (cos6) {S“‘ ve

are homogeneous of degree n in the three arguments.

We have therefore 2n 4 1 surface spherical harmonics of _
order #, namely,

By p n(cos 6), P%(cos 6) sin v, Pr{cos 8) cos vd,
(P=1,2,3,...,ﬂ). )
These are evidently linearly independent,” We wili show later

These are\gherefore homogeneous polynomials of de
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(Chapter 1X) that there are not more than 2z + 1 such func-
tions; hence every surface spherical harmonic of order » can
be expressed as a linear combination of the above functions,
(We can call the functions (32) the standard surface spherical
harmonics.)

Remark. The equation {30) has (like (27}) only 0ne\5€ﬂu}
tion, aside from a constant factor, which remains flﬂite at
# = 1. The reader should prove it. N

Art. 6. Orthogonality | o

One of the most important properties ot the 1.egendre
polynomials is their orthogonality. Two ftictions f(x), g(x) are
called orthogonal with respect to ansintérval ¢ = x = b if the
definite integral of their product }(ahjéhes. ie. if

b AN
J f(x)g(f)dx = (.
And a set of a finite or af iﬁﬁnite number of functions ¥1{x),
¥a(x), . . . . is called amorthogonal set, if every function of the
set is orthogonal toceyery other function of the set. If &, ke,

.. is any set Of, constants, the functions &y, (x) = ¢ (%)

evidently fo.r,n(aﬁ orthogonal set also. It is well known that
the functipqs.'

: Siﬂ)\@?ﬁi =1,2,8,...) and cosnx (n =0,1,2,3,...)
fqrrht an orthogonal set for the interval 0 = x = 2, since

"\. ¢ '\: L3 2
\ ) ﬁ sin n% sin mxde = 0, _{. cos nx cos mxdx = 0, form #1#,
. )
2x
and J sin #x cos mxdx = 0.
0

‘H a f“‘:‘Ctioﬂ F{x) can be expanded into a uniformly convergent
‘Fourier series”

- Flx)=ao401c05 x5 cos 25+ . .+, sin x4-by sin 2+ -



ART. & ORTHOGONALITY 103

then the orthogonality praperty provides a very simple method
of evaluating the “'Fourier coefficients” a,, ba.
The Legendre polynomials form an erthogonal set of func-
tions for the interval —1 = u =1, i.e,,
1 N\
(33) J- Pu)Puluydu =0 (m = n). )
1

— P ~\" \ ¢
This may be proved from their differential equation (27) @nd ’
the fact that, being polynomials, the P, are certaiglyicon-
tinuous at the singular points =1, We find ﬁrs{{gom’(fa”?)

that

1

! 4
J Po- ({1 — un)P,Ydu + niln + I)J P ndu = 0.
1 {14

Using integration by parts, the first integral becomes
1

-1

1 W W

J-—i Pm ' ((1 - uq}}’);’{)#du = P'“(I v% uﬂ)P:’

- J (1 = w)P,Pdu;
-1

al

o

the first term on the rzgiht\ vanishes on account of the factor
L — w2, since P, and }%.\'emain finiteat # = = 1. Hence
1 “ |, 1
"J- ) (I =P, Podu + nin + 1)J PoPudu = 0.
T -1
A second siffiifar equation is obtained by permuting m and #;
then by gibtraction,
s.:; 1
O e+ ) -+ 1)]'( 1P”P'"d“ =0, |
Trom which the orthogonality property (33) follows for m ;é .
An Orthogonal set of functions ¢, (x) is said to be normalized

if each function of the set satisfies the “condition for nor-
mality” :

]
J dadx = L.
¢ L)
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For such a “normal orthogonal system’’ we have the properties
) b
J' batmidx =0 (m £ n), J ppldx = 1,
a a

By means of the quadratic condition for normality, the arbi- { N
: trary constant &, in the equation ¢, = En¥n is fixed except fm-
51gn, since

PR — "

J“= lpﬂ dx "w:\\.
Since v

iy L3 x.\\.: 2x
J sin®nxdx -=r costnxdx = w(n = L2 .. .),J. dx = 2n
0 N 0

-0
the functions . O
1 sin nx 3 ‘cos nx
form a normal orthogonal s}sfem for the interval 0 = x == 2m,
In order to normahzg:\;he Legendre polynomials, we must

evaluatej P2(u)hl@\ “The value of this integral is

: A\ "1 9
(34) N\ J P(w)du =
S

n+1

This *{"-55113’ proved from (12}, which for ! = 1 becomes
X . o

3\3':" 2 Pa(ﬂ) P = (1 — 2pu + )%

) Squaring and i integrating, we find (remembering the property
(33) of orthogonality)

1 1
2 @ "J Pldy J __du
A= -1 -11 _29ﬂ+p2

1 1
-5 [103(1 ~ 2pu + p’)]
p -1



Arr, 6 NORMALIZATION _ 105

1l

=+ [togtt = o1 tog(t + o

fe

i

i— [iog(l + p) — log{l ~ p)]

207 | 2p¢
=2+ 4 —+4... A\
3 5 \' \
o 2 4n $
= - P P
n=02n +1 N\, 4

By comparing the coefficients in these two pou{e}\séries. we
find (34). \
A useful identity is Rodrigues’ formula’:j\\“
L dnu S0P
*nt dun

This identity may be obtained byexpanding (u?— 1)* by the
binomial theorem, carrying outthe differentiation, and com-
paring the general term of the resulting polynomial of degree 1
with that of (13). ~\

Exercise. Infer § 6(‘:1”(35) that 21l roots of Pa(a)=0 are
real, distinct, and Between —1 and 1.

Remark. We.\’i';féntion without proof that equation (35)
may be deriveq from the orthogonality of the Legendre poly- -
nomials, ¢ o _

ACC?{&Iﬂ’g" to (33) and (34), the functions

O onlw) = '1/2”2"‘1P,.(u) n=012..)

3
form a normal orthogonal system for the interval —1=u = 1.
i a function F(x) can be expanded in a uniformly convergent
%eries of Legendre polynomials '

Fu) = a0 Po(u) + a:1P1(w) + aoPa{w) +. . .+ 2aPultt) +..
then the coefficients g, can be determined in the Fourier

(35) Pn(“) = 2




106 SpHERICAL HARMOWICS Cuar, 1V

manner, multiplying the equation by P,(x) and integrating
the series termwise, which is permissible on account of the
uniform convergence. On account of the orthogonality pro-
perty, this gives

i 1 1
J F(u) - Po(u)du = a,.J Pr{uydu O\
-1 =1 N\
and therefore from (34), A
1 a3
(36) \ =2”;'1J F(u)Py(wydn. <O
-1 ‘)

We note that the Legendre polynomidls arc cvidently

" linearly independent since they are eacQx of different degree;
and the set of polynomials P, Py, 1.’3:’;*. ., P, contains poly-
nomials of each degree. We can therefore obviously not only
represent the polynomials in qua}éfs of u, but conversely we

can represent 4® as a linear_éombination of the polynomials
PD!PI,o..|Pn: ’

. ut= poPy(u) "[‘mfi;a—1Pn—1(ﬂ}+- o poPoluy,
where p, # 0. Ingfactthe solutions of the equations (13)give
1 = Py(u), = Pi(u), ut= 3 Py(u) + 3} Poln),

: N # = § Py(u)+ § Pi(n), etc.
Hence every-polynomial of the nth degree can be expressed as
alinear{Cothbination with constant coefficients of Po, P1., - - P
thagds,'expanded in a finite series of polynomials Py.

..\3 ‘From this it follows that, since P, is certainly orthogonal
\\ i every Py, of lower order, it is orthogonal to all the powers

’ _1’ % %, ..., w*1 and accordingly also to all polynomials
in « of degree less than ,

The derivative P',(u) = ‘%P_'_‘ is a polynomial of degree — 1
%
‘and can therefore be expressed in the form

| P,(w) = aPoi(w) +. . o4 oPpat) .. .+ caPo ()
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where the ¢x are constants.  The “Fourler coeffictents” ¢y, ¢z,
oo oy £ are, from {36),

1
= _2._(1"_:2}") +! j P () PLw)du
i

20 — 28 + | 1 y
e ren ] s o
"\

This last integral is zcro, since Pj_, is a polynomial Qfgdkg’ree
less than #, so that A D

_ "\
€k=2ﬂ ;k—t_lglﬁ(_l)n-k(*l)n}

_ {0 for k even, ,\J
©\2n — 2k + 8 for kodd. .
Therefore AV
Pw)=(2n — UP._ (1) + (2 ~ B}Pas(u) +
A @ = 9P+
This result is the cxpansion asstimed in (15).

We will now prove: Q{el-e is only one set of polynomials
which (5) contains polyfidmials of each degree, and (4% forms
an orthogonal set for'tlie interval —~1 = # =<1, (Polynomials
are assumed equivalent if one is a multiple of the other.) Let
o Q1 Qr, .. . 2B¢ a set of polynomials with the above two
properties. /Piién Q, must likewise have the property of being
Orthogm}ﬂ{t\e‘évery polynomial of degree less than #.  Let

O Pu= bt b bt L (Ba #£0),
BESS T Qn = dt +dpewn L. (de #0).
\Fr‘om these, we form

- Ru) = d,P, — 5,0, = (dabay — Badn—p)u™ 1. . ..

- Now R{u} must likewise be orthogonal to every polynomial of
degree less than n, and hence must be orthogonal to itself.

1
But fromj Ru)du = O it follows that R(s) =0, so that

- N
i

2

&
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P, and Q, differ from each other only by a constant factor.
The Legendre polynomials are therefore fully characterized
by the above two properties, aside from constant factors.
These can be determined by the reqluirement that Q1) = 1;

or else by the normality condition J Q2du = 1, or the con:
)} -1 N

dition thatJ. 0 du=—2— , if,in addition, the coefflicnt
-1 2” + 1 N

of u™ be chosen positive. '

The Legendre polynomials can therefore he'{defined by
means of the expansion (12), or as the only ¢ptinuous solu-
tions of the differential equation {27), or, ﬁzkally, by the above-
described properties. D

The property of orthogonality is yé@ﬁ'd also for the associ-

ated Legendre functions, and may be.groved in a similar man-
ner, Hence for m = #n, o

i AR
(83%) _[ P Pru)du =‘J‘ S (1w PO (u) P (wydu = 0.
- R
Corresponding to (34), #e have '

1 ¢ g\J) i 9
6 [ Bl =212
' ~1 ) {n—»)! 2n41
The conceptof orthogonality can be immediately extended
o fu‘nct%qmcf several variables. Two surface spherical har-
monics @,"A .. of different order are orthogonal with respect
to the's rfape of the unit sphere, i.e.,
37 - ”A,,,A,,ds =0 (m =),
N . ? ‘
where the integral is over the surface of the unit sphere. This
follows, for instance, by setting = p» 4, and v = p"Am I8
" Green’s formula oy du

J‘(ﬁ*— —”_)ds =(Q. Thisformulais
on an

applicable since #, p are regular and harmonic in all finite space.
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Since -t?- = _3_ , we find
on  dp

”‘(p"A»mp"“‘Am— P A e )dS
= (m — n)'”A,..A g8 =0,

since p = 1, from which the orthogonality property {37)- .fo]-
lows. Of course the propert(33) may be regarded asaspec:al
case of {37}, obtained by assuming that A, and A, are inde-
. pendent of ¢ and making the substitution cos § =
We will return in Chapter 1X to the subject\of the expan-
sion of “arbitrary functions” in Legendre polynomlals and in
general surface harmonics. R
Exercise. We call two sets of fusictions fol#e) . . . . fa{#)
-and gou) . . . . g,(u) “linearly equivalent,” if each functlon of
tither set can be represented as all ‘finear homogeneous expres-
sion with constant coefficients ofthe functions of the other set.
Accordingly the sets of Legendre polynomials Pn(#) and of
pawers 4™ [m = 0, 1, 2,‘ \ n] are equivalent. Prove that

the coefhicient p,, u‘}\‘uﬂ = 2 pmPr(i) which is given by

N

P = _:i:_l "P,,,(u) du has the value
- —m+2)
qug;h nm — 1.0 (n —m
T (n+m+1)(n+m-—l) An ~m+3)
°“'¥='nn--2 ..,and pp=Oform =n—1Lr—3...

L&pﬁ‘ly (85} and integrate by parts.)

7. The Addition Theorem for Spherical Harmonics
We will now prove the following identity:
88) F (COS a) = P,(cos §) Pa{cos t')

+2 % P =0 b o5 )P (cos #) cos vig — ).
it )



\
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Here as in Art. 2, (8)

cos & = cos 8 cos §'+ sin 8 sin 6’ cos {(p — ¢).
Let cos 8 = u,cos & =v, ¢ — ¢’ = ¢, then

(8%) cosa = HY +\/1 —w''V1l —vicos ¢
and (38) takes the form

O\
(38%} Plcose) = P,(u)Pg(v) + R \\ ’
- (=), KON
2v§1m! Pn(ﬂ.)Pt(i);.(rOS ]J'kb.

The function P, of the argument cos e, wiich from (8} is a
combination of cos 8, cos ¢, sin 8, sin §’, cosb, is here expressed
in finite form in terms of the function (P and its derivatives
with respect to the arguments cos)j\éos ¢’ themselves, with
powers of sin 8, sin # and the f’uni:tions cos vy also entering.
The formula (38) is therefore 'I;:iéwn as the gddition theorem
for spherical harmonics. Sifice
cos W = cos v o8 v¢' -+ sin v sin v¢/,

the addition theorem-evidently gives a representation of the
spherical harmonig®P;{cos a) in terms of the 2# + 1 functions
{32). We may’consider P,{cos o) as a function of the point
P8, ¢) withoefficients which are functions of Q:(¢", ¢'), o
vice versq, ()

Ta preve (38), we note that the function P,(cos o) is @
polyt\{st‘nial of the nth degree of the argument cos ¢. It can

' '!:'l'l'e,re.fore be expanded in a finite Fourier’s series of cosines of
d _miultiples of y, with coefficients which are functions of # and v,
3

(39) Palcos a) = Colu, o} -+ 2 é C{u, v} cos v

s=]

Since cos a is symmetric in % and v, this property must hold for

C,-_(zf. v}; for if we permute %, v in (39) and subtract the re-
sulting equation from (39}, we have

Colw, 9) — Colw, w) + 23 (C,(u, ¥) — C,{v, u)) cos v =0
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This identity can evidently only hold if the coefficients of
cos wf (v = 0, 1, 2, ..., ») vanish separately, from which the
symmetry conditions C,(«, ¥) = C,(3, #) follow.

We now compute the Fourler woefficients

s g
40y Clu,v) = 13 J P.(cosajcos mpdy (v =0,1,...,m).
27 Jo N\
Itis easy to see that C,{u, v} as a function of ¥ must saj:isfj\z the
equation (30); for Py, (cos a} considered as a functionof§’and ¢
satisfies \\
’
(25} siné 9 (sin g 6P,.) 4 &Py + n{n + Nsin®8P, =0,
_ a9 39 ay? O

On the other hand, by two integratioqs'\ﬁy.\parts,

2% na 2x \J

] 2 Pf" cos Wi = — v"'[ P, éoswpdy = ~ 2m2C.,.

o ayt 0 :

This remains valid also for vng),’ since

2x ag ‘.”' §m 2x
J aPnd, =8Pn,

o P2 Y =0
{P» being periodic,in@Q) with the period 27). If we multiply
(25) by cos wy angd }h\tegrate from 0 to 2, we find for €, as a
function of § theleguation

(29) Si?f%(sin 7] %) ~ 32C, ++ n{n + 1) sin®8C, = g,

and h"'keé: as a function of # = cos 8, actually the equation
{30):\ However, from Art. 5 the equation (30) has only one
"“?cé.h“ﬂﬂn {aside from a constant factor) which remains finite

NAtu =1, namely (‘\/1 — u”)’ PW(y) = Pi(u). Hence C,(u,v)

must be this function multiplied by a factor dependent only

on #. But since C, is symmetric in 4, o, it follows that for

»=0,1,2,...,x,

) I G ) = @ PROPAE)

where g, is a constant. From (39) and (41) we find that
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(42) Po(cos o) = aoPy () Paly) +2 Z a, P, (1) P',(v) cos vy

where the constants ao, d1, . . ., @n have still to be determined,
For this purpose we make the following remark. According .
to the definition cos # = u, cos 8’ = v, we have |2} =1, [v] =1}

- if # and ¢ are restricted to real values. But we can lif¢ tf)iﬁ

restriction and can assume that 8, &, and so also «, v, take on
arbitrary (real and complex) values. Equation (42)is then
a relation between analytic functions. It is known from the
theory of analytic functions of a complex variable that, if a
relation between such functions holds in anyrégion, however
small, it is valid in the whole region inm&mﬁ:h the appearing
functions are defined (principle of the- éonservatlon of a rela-
tion of functions). Accordingly (42) Holds for arbitrary (real
and complex) values of ¥ and 7. \We are, therefore, entitled
toletov» @ and 4y . N

N

(2?1)

2~ (nl)?
efficient of the hlghezﬁt,\power in the polynomial Pn(cos a}.

Remember (compare Art, 2) that b, is the co-

- Divide (42) by v a\ﬂ» letv > «. Then

o

\

lim P~———<—"(ws g) = b, lim cos” a

L 3 epm P°
since vi&ently

< -

A\ lim <% < lim {u-i- l—u*’/‘/——lcosz,&}

N rro @ oo

= ba{u + iV1— utcos )™,

\;;\lso =u+1‘\/1 — u?cos .
Tim — 227 "("') ('V’l ) P% ()
»o Pt l-)m v v
=7 lim P00O) _ gy !
vrm g (n — »)!
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because the highest power of v in P®(y) has the coefficient
ba #( — 1). . .{n — » + 1). Hence from (42) we get the im-
portant formula

{u -I-ﬂ/l —ut cosy)® = ag Poln) +-23 7, (
n

!
pry Pu(u)cosmp,

or ¢
oA
(cos & + 1 sin @ cos )" = G&Pn(COS )] N\ ¢

N/

+2zm P;(cosa)bosvdr
(n — ) m\
If we divide this by u” and let u » @, we gef\¥

-\
2N
{1 —cos )™ =~ aob, + 23 Fa bt (’Q’.' (4 o8

(EASOLY .
2o CoY ,
l)'-’ + .,?1 ( e, "ol (n —») !I’coa i

But there is an e!ementary 1dent1ty

@dr (— 1y (@n)! |
(1 —cosy)* = ( cos »,
v) \%{{' #1)? + 22“(’: — )l (n+ 9!
which may be, pmved by mathematical induction. By com-
parisom, it is ‘séen that
"\*:\ a, = (ﬂ — !
N )
for aH v, in particular as = 1, which finalty proves the addltion
m\thfe()rem _
Exercise. Find the coefficients in the expansion of
(1~ cos g)».
a} by the Fauner method, b) by mathematlcal mductxon,

¢) by setting 1 — cos v =2(sing=—#e “"BJ) and
using the binomial theorem.
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Moreover, we now have

(0 +VT = woond)® = Palw) + 259 -2 Pitu) cos
(65} {cos 8 44 8in B cos §)" = P,.(cos 8) A
+ 2_,'11 " + ” P’ {cos 8) coby.

The left eide of this important identity is a homegencous
palynomial of the #th order in the arguments cos'dhsin 8 cos ¢
(tha third argument sin @ sin ¢ is missingf)\sRd is thus a.
spherical harmonic of order . Equation A43)'1s therefore the

of this spherical harmonic in terms of the functions
(39), with the functions P(cos 8) sinwp not appearing. On
the other hand, (43) is the expans:orrof the function of ¢ on
the left in & Fourier secies (finite). The Fouricr coefficients
an P,(w) and amociated functlons multiplied by constant
factors. From this fact, itfollows that

(M) Pus) = —&(ﬁ +iV1 = wrcos ¢)n dy

wolag the ususl way of finding Fourier cocfficients. This
fepressatation of the Legendre polynomial as a definite in-
togral was given by Laplace. In a similar manner, we obtain
for tha. ted functions the integral representation

| __,“'}P.{U) —"} ('+’) !j (#4+iV1 =12 co- §)" cos Wiy

~h_ﬁl lddition theorem itself we get in the same manner
Pulicos )Pofcost’) = — r P (cos a)dy,
1‘

'Heuo)moo-o')- g oo [ (cos ajcos b
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irt. 8. Expansion of the Potentials at Infinity

_We will now expand the potential functions, and also
yarmonic functions which are regular at infinity, in series
sonvergent in the neighbourhood of infinity. Concerning the
definition of regularity at infinity see Chapter 11, Art 7.

We begin with the logarithmic potential and apply the (N
'\

tranaformation of inversion: Y
x ¥ .(w‘:
“ :c' = —, LR — , AN
( ) xE + y?. y x? + 3’2 M\ v/
with the inverse W
f F
s B S
%2 + yrg 2’2 4 yﬂ:;'.\ 4

Hp=Valtyyo, then o = \/x’3+ y:22> 0, so that the
neighbourhood of infinity is mapped nori:, the neighbourhood of
the origin. For the potential of g},ﬁbfple linear distribution,

spread on a curve C, viz., U =~ f"-y log; i ds, we proceed as
follows: KN © ¥

2\
Let  re(c — iy o= x4y — 205 + yn) + £+
== 2(xt Rym+ B (P=4840T)
= ot (L R(x'E 4 a'm) + 7B,
and hence ANV

Lo
log 5 (Slog — — 5 log {1 — (2t +25'9 = o

ay
NS

ffl}vgw —log(l—z)=z+§+§+...
\hdlds for |5l < 1, therefore the expansion
—log {1 =@ +2y'n — o"M)} |
= (28 + 2y'n = o"1) +(_2)j + 0l
3
=2yt ..

N ’

A
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holds for &/, 3 and hence p’ sufficiently small. The dots repre-
sent terms of the second and higher order in %', »". The separ-
ation of terms by the removal of parentheses is justified as in
earlier expansions (Art. 1). Hence

N

an  logl =log X 4+ 4+ 4. ..
r o O\
and finaily S\

Ny

U= legij yds + x’J ~vtds + y’J- ‘ynds.ﬂ-"-}% .
pJC (& (AP Ps .

A\

= M’log-l + Ax'4 By +. ..
p

AN .
where A and B are constants. Retu@’i;n\g to the original co-
ordinates, $

1 x.::' ¥
48 U=Mlog—+ 4 - B +. ..
(48) ng-l- xf%,yz+ R

= Mlogl -|-.U'i‘.
P

This expansion is \(q}i& outside a sufficiently large circle about

* the origin. Thebseries is uniformly convergent and may be

differentiated téymwise arbitrarily often. The function U is
obviously harmonic and regular at infinity. _
In ogderto get the potential of a double linear distributton

expressed‘in a series of the above type, we first note that from
(47)since p is independent of £, 1,
N\ i
) 6‘(log—)
& r , 08 . 0%
) S SR QR IOV R
\- an an + am

and therefore with constants C, D, ..
alog(—i;)
v =j o\t :
¥ ™ ds = Cx’4+ Dy’ 4. ..

~Cc_% D-—2 ...
x2+y2+ x2+y2
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The potential of an area distribution

JJ.U Iog}—dS
¥

is easily seen to lead again to an expansion of the form (48)
These expansions are umformly convergent outside a suffid)
ciently large circle about the origin; they may be d1fferentga\,ted
termwise as often as desired, N

A harmonic function which is regular at mﬁmty may be
expanded in a series convergent in the neighbeurhood of
infinity. One has to use Chapter 111, Eqn. {39)}&xXpressing such
a harmonic function in terms of line integrals‘around a closed
curve. It is necessary to note here that since the density

of the mass distribution along the cnirve s — L % , the total
mass of this distribution is zero, since o’

M= —§1~ —al‘ds = 0 see Chagpter i1, (29%) -

on A

w

Hence it follows m{n\edxately that every harmonic function
regular at mﬁmty as'an expansion of the form

Q@ b
(49) u=c+ Y U
\\" x2+y’+x2+y2
where C&d\ b, . .. are constants.
We will now prove that the inversion (46) transforms a
harlﬁomc function u(x, y) into a harmonic function of £,y

€., into a function = (_, )satlsfymg-” + -B—}T =0

Since u is expressed in (38), Chapter 11, in a form which con-

tains x, y only in the form log 1 , it is sufficient to prove the
; .

theorem only for this function, or for the function log (r*).
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Now
log {?) = log {o*— 2(x¢ + yn)+ &}
= —log p"* +log {1 — 2’ + ') + "0}
_and setting Eiw = E’ =9 ‘\/E-’z -9 = Jr2

log (1) = — log 5" —1ogrm+logtpm 2 (8 ya) HERD

Evidently, each term on the right in this equataon @atlsﬁes
Laplace’s equation in x', ¥ y

From the preceding results we can statey ’c}}e theorem:
A logarithmic potential is vegular at infinity ¢f whd anly if an
inversion carries it inio a polential regular thhe neighbourhood
af the origin. o~

The expansion of Newtonian potentxals in the neighbour-
hood of infinity is now not difficules * By using the inversion
(50) =2,y =2 8% p=Var gyt

2y 3

p p us“ 'p
x ! ! )
x:—'-s.y=2:_,z,=ﬁé—’-,p ‘\/mg’(p::_),
P 2 \\ 2 p

it follows that

r»-vt»r EETED T En)

%"Vl —2(x't +y'm + 2O+ 0 =24+

1
»\-i- = +{1 = 2(2' + ¥'n + 20 + 020,

\and hence for sufficiently small o,

11
- ;1+%(2x£+2yq+25;—p'2;2)+ ..... ]

r

|

i
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n o on ;03 n pion A o
¢\
s0 that O
o v=[[Zas A AEraZ p Y
J7r 4 o p o d
‘ ( O
(52) V = JJ.M—)dS Bl““'+B.2‘$"+ Ba—-+
p \sp P

For the potential of a space dlstrlbutlon of mass, the
_expansion is, of course, of the same form as (51). These series
are uniformly convergent outmde a sufficiently large sphere
about the origin, and mayg be differentiated termwise there
arbitrarily often. L

If is any harm,on\c function which is regular at infinity,
and hence is reguldr, Sutside some closed surface S, then % can
be represented (€bapter 111, (40)) as the potential of a surface
distribution, ffs the potential of a double tayer on . Hence
it can be e\panded in the form

‘TI
KAt R Y 7
R b p o’ p* ,
N + (e’ Fay +as’ + ..

Where im pu = M. This series is uniformly convergent and
LR 2N E
termwise differentiable arbitrarily often outside a sufficiently

large sphere.

An essential difference from the behaviour of the logar-
¥ _g_’),derived.

ithmic potential is that the function u( Rt
o't p



“for the special case of the potential 1 . Now
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by the inversion (50} from a potential «{x, v, 5), doesnot satisfy
Laplace’s equation in x', ', . On the other hand, -ﬂi! isa
P

harmonic function of &', ¥', . It is sufficient to prove this,

O\
1_1 - 1 O
fp' p" x’ 2 yl 2 PR N
V(G- +(ao) @)
- =t ),
| \/1-—2(xs+yn+z’§)+£=’“z
_{2';1:;#3,\/;2 P ,2$,=_1_
Let =4 5=, = VT F1 =0 =
then O
i S
' V( —"E’)"-i‘ {y —o)2+ & =)

and this function is wxdently harmonic in x/, ¥/, &',

‘From the fore}smg work it may be seen that: 4 harmonic
Junction u(x, 33} is regular at infinity if and only if the corres-

 bonding uselin

...\

vV

N ’ ' /
A AL S

hm‘m‘onic 'y, &, is regular af the origin.

- We will now discuss the position of extrema of a harmonic
functmn regular at infinity, The theorem that a harmenic
function can have no maximum or minimum in the interior of
its reglon of regularity does not in general hold for infinite
regionsof regularity. This can be seen from the simple example

M
%= o since this function hasa minimum at infinity. Fromm
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the above series expansions, it is evident that every harmonic
function regular at infinity, whose mass M # 0, has a minimum
at infinity (or maximum if M < 0); for it is evident that the
potential has the same sign as M outside a sufficiently large
sphere, and vanishes at infinity. On the other hand, it is trued
that: A harmonic function regular al infinity with a mass M, ==\0
cannot kave an extremum af infinity. This may be provéd“as
follows: If u(x, y, 2) has an extremum, say a minimbm, at
infinity (of course # » 0 as p+ =), then thé Tunction
7 r ¥ ¢ 2
“(;xr!. -3;2, 5’3) must have a minimum 0 at thg\&rigin in the
(', ¥', #')-space; that is,  is 0 at the orxigin:and is positive in

- W u

the neighbourhood of the origin. Nowmot merely %, but also -
OO P

vanishes at the origin of (x’, y', 20)-8pace, for it was assumed

. . o .U, e

that M = lim px = lim i.:ft 0. But since —is positive in
P >0 ghy »

the neighbourhood of the origin, it must have a minimum

there; this, howeye{{% impossible since ff; is a regular har-
o

monic function dn the neighbourhood of the origin. Hence
the theorem igproved.

Just .aé.'l was expanded in the neighbourhood of the origin
“ it d

fn RoSitive powers of p, it can be expanded in negative powers
inthe neighbourhood of infinity. We obtain, since r is sym-
_\'“gnetric in P and Q, .

) Lo pw =Ly rwl Pl +

r ne0 o™t g ot & _
and this series is absolutely convergent for p >, and is “ﬂi.f‘:’”“-“
ly convergent for every region which is entirely exterior to

the sphere of radius / about the origin. The expansion for the
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derivatives of-l— are obtained by termwise differentiation of
(53).
The general ierm

In
Pou{u) e =Pyulu)-p"

n

pzn—H

is equal to a spherical harmonic of order %, divided by .Q’l""’“\.
Such a function is harmonic. For if w(x, ¥, 8) is an}agbitrary
. i 7N [
harmonic function, then z(xz’, 5/, 2') = }-, w(i,2 , 2’;2 ? im) is

p pEPF
likewise a harmonic function of x, 3, 2’.  If wisa’homogeneous
polynomial of degree # in x, ¥, z then itfollpws that

11 A\
v(@', ¥, 2) = = ;;g,w(x’, AN IngIdw(x’, ¥, &)
OV

This function is therefore harmoni®in &', ¥, 2. But sinceitis
immaterial how the variablesiaté desigrated, it follows that

bty 3, 2)
_ - pm+1
. . s +8 3
is harmonic in x, $ %

From the abye expansions of i and that of its derivative
A</ ¥

¢ \ ;,\ 3 J (}?)
NS A7/

on

.. (the expansion of the thiee Newtonian potentials® in the
\ Jneighbourhood of infinity is obtained by multiplying by the
density (or moment of a double layer) and integrating term-
‘:Vise- Each of these potentials may therefore be developed
in a series whose general term is a spherical harmonic of
order » divided by p**H.  These are absolutely and unif ormly

L]

“The potential of a body, of a surface, and of a double layer.
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convergent in the region outside a sphere which contains the
distribution in its interior, and may be differentiated term-
wise as often as desired. Similar expansions are valid for any
function hariiionic and regular in the neighbourhood of infinity. ~

Exercise. Prove the following theorem: A harmonic func:
ton ulx, ¥) which is regular at infinity can have no ex:re'n)a}z
al infinity. Note that in the two-dimensional (logarrthmlc)
case a hari-ate function is regular at infinity if and’ only if its
mass M =0. The mass is defined to be the Im{t\

u(x, y) ' - M

AY;
log — 'x:\
Og > ‘\ /

lim
py

Att. 9. Exercises concerning Legendre Functions

We want to apply the th,emy of analytic functions of a
complex variable to Legendte functions. Qur starting point
is Cauchy’s integral theorem

B4 -t g(3)

59 \g( 5 Zm z—udz

where g(u) is an analytlc function of # and C is a closed curve,
which lies en,tlrely in the region of regularity of g(%) and encircles
the point’4*in the positive sense (counterclockwise). The
derwa,des of g{#) are given by

\ g (w) n! 2(3) -
seRy L) _ _E\E =1,2,.....
\( \5 T (¥) = il G o dz [n ] .
N\ Put (-ﬁ-é_;i-)j = g{u), use (35) and (55) and show that
(56) P(u) = .1 M ds.

2ri 2% )¢ (z — u)™
From this we can derive again Legendre’s differential equation
(27).  Show that
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(1 — ut)Py () — 2uPy(w) +n(n + 1)Pu(n) =
n + 1J d (g2— 1)"H
ovtigi o ds (5 — u)nie
and notice that the integral vanishes, since Cis a closed curve,
The integral in (56) could be used to extend the definition N
of P,(%) to the case where » is not a positive integer, but wq
shall not study this problem.
The Legendre function of the second kind Qn(u) is deﬁned by

_ 1 -
(57) Qnlu) = 2,‘_,_1.( . Wd" N
for all finite points u except the points of tshe linear segment
—1=u=l, ¢

\.
Show that Q,() satisfies equation (27) since obviously

Jﬂ d (22— 1)"th 0
132 (z -».zmﬁ BT
Show that =N

O Iog ex
(68) \

Q\u) ——log +i 1.

After we have) glven 2 method to derive (27) from (56), it is
not diffieult’to find again the recursion-formulas of Art. 2 on
the b&f\ of (66), Take, for instance, the expression on the -
leftrside of the formula (C) of Art. 2 and show that it can be
represented as the integral of a differential quotient.

) We can prove likewise on the basis of the definition (57),
- that Qn(u) satisfies the same recursion-formulas as Pa(#).

Derive from the validity of the same recursion-formula (4)

of Art. 2 for Pa(u) and Q,(x) that

(58%) Ont) =} Pa(u) log v i F paaln),
u —
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where pn—1(%) means a polynomial of degree » — 1. Apply .
mathematical induction. (In the case # = 0 one has to put 0
instead of p,_1(2} ).

According to (58%), Qu(%) is defined for all finite points u, {\
except for the two points % =1 and u =~ 1. They are qtr_g

gular points of Q,.(u). (\,5\ .
&
0
N
e
L ¥

O

£

\/

N
‘:\\‘
&N
\\‘g .
N\
g\&\.i
(; ‘}
"
’2;“
O
\w
O



CHAPTER V

BEHAVIOUR OF THE POTENTIAL AT POINTS OF THE MASS

Art, 1. Auxiliary Considerations

It has been seen that all potentials are regular arfaly'tic
functions at all points outside the masses, We wiIlzm':’s‘w con-
sider how the potential behaves when the figldpoint P
approaches the masses causing the field, orymoves in the
interior of these masses. We will consider this problem in
detail only for Newtonian potentials; ,11&16 corresponding
theorems for logarithmic potential, whiéh"may be proved in
a similar manner, will be merely statéd'or inferred.

N
# A

. The potential of a space disttibﬁtion,

[fea

\ ¥V

O

exists also when the\}ield-point P js in the mass, i.e. in the
region V 4+ S. Lt the boundary S be a closed surface, with
continuously #hanging normal. Introduce the spherical co-
ordinates"r\;:&,"gb with P as origin, and the integral for the
potenti@\Kbecomes

\\ ' 'u 7r sin 8drdbdg.
O~

Thus the potential integral is changed by this transformation
of coordinates from an improper integral to an absolutely
convergent one (proper integral). This is also true for the
Integrals giving the force field, as for example

126
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Jf lJ' 157—3-_3«:_) av = Jﬂ . i%icsin 0drdods,

L‘E_Z'_:‘iifl.
1

remembering that

In order to penetrate more deeply into the subject, wey,
must get inequalities for certain integrals, :..\ v
We seck an upper bound for the integral A7

1 N
—dVv %
.”- r o)
V - 4

which is to be independent of the position of\P*and dependent
only on the volume V of the region V.{ Let K be a sphere
about P as centre, having the same volume V. It has there-

3 « \J
fore the radius I = (i—v) smce V 4;2 . Then we can

# N
prove that o\

M L[ J %&1!}; 2 (5”‘-1-‘;)i

irrespective of whet}er P is inside or outside Voron 5. For,

g

x'\

Fre. 7
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let K’ be the part of the region V which is inside the sphere K
and also let K’ stand for the volume of this region. Then

[F2or-[p [ X
”FVJF md" ”ﬂ’ﬁm—"f zx 7

since r = [ in the region K —K’. Also K ’\.’

-y 8
JIERYIRS B

since 7 = [ in the region V K” Combining these inequali-
ties, we find

2x f'x
=T
e 3y
:"’\’} "—2- 2'21r'=21r(4—TV) .
2

g

Anotl'mr inequality which holds for all positions of the
pomt

' A\ : H
o ([ =u(y
) r? 4
Q v
This is proved in a similar manner, using

3
J- J a4 = J-J.J- sin 9drdéde = 42l = 44 (:ﬂ]) .
v r 4

In the plane, it is found in a similar way that
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[[£==(2).

where the quantity S is the area of the plane region S. And
simitarly, the more general inequality, valid for 0 < ¢ < 2,

S _2r{ S\ ‘O
3* — == ~\
@ .L i s (r) \ O

U
N

Q!

which contains (3) as the special case ¢ = 1. (O

Finally, we consider the integral

¢ &
AR\

over any bounded surface § wjtﬁ continuously changing
normal. By a rotation of the.goordinate system, this may
be taken so that the normal.&t a particular point Q of S is
parallel to the z-axis, and herroe cos(n, g} = 1 there. For any
pre-assigned constant ¢ 3atisfying the inequality 0 < ¢ < 1,

on account of the coxit’huity of the normal there is a region?
about Q such thatfer all points of this region cos(n, 5) Ze¢.

We assume that ‘the surface S is small enough so that this
inequality hplds over it. ‘Then for this surface :

o &)
‘.§~ Jr c\w
Whe:e' « is the area of the projection T of S on the (%, )-plane.

¢ ‘For. let ¢ be the projection of 7 on the (x, y)-plane and dw be
the projection of 45. Then % = cos(#, £), so that

S =9 _ <% sndalsor=r;
cos(n,z) ¢ _ *

The portion of S cut off by a sphere about ( is considered here.
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t
—“‘fi;s = 1 JJ‘E_? = 2_11'(9—) from (8).
r ¢ r c\7
3 T

The more general inequality

/2 N ‘
@ J[EE(E)T e<e<n O
3 CF\T £ \..

is proved in a similar manner, G

hence

Art. 2. Continuity of the Potential of a Body‘and of its First
Derivatives O
AN
The potential { ¢

o[
Sl

™
15 continuots when the field-poink P lies inside or on the boundary
of V. To prove this, it mist be shown that, for any pre-
assigned ¢ > 0, the meqtlahty

ORI (IUp — Up|<e

holds for the dlstance PP sufficiently small, where Up and Upr
are the values: 0£ Uat Pand P'. First let P lie inside ¥ (not
on .S). LETK be a sphere about P of radius 8 small enough

N thﬂ:fj Lavli< E. and so that X les inside V; i N
X

bgﬂre maximum of |r|in ¥ 4 .S, then this can be accomplished
\ i 8 satisfes the inequality 2xN§ < -5 , since from (1),

” Zav

After & has been chosen in this way, and thus the sphere K
- fixed, let

=N 2%




N
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U =_w_:-dv+ ﬂl{_ df’ = UW 4 y®;

then | U] < ; . | U

< é so that no matter where P’ is

located,
1} 1 2¢ 'S
(6) P~ up| <. O\
3 e\
But for the integral U'®, P is an exterior point, 5D}that the
continuity of this integral is trivial, and hence \\

2 @
() |UE U})[< PR
for PP’ sufficiently small. From (6}.\and (7) together we
have (8).

If P lies on the surface .5, then the above proof can be
repeated, the only dlfference Being that X is to be that part of
the sphere inside V. A\

The proof of the con”tmmty (for points in V) of

o

.\

andof ¥ ahd Z is made in a similar manner, making use of the
1nequa.hty (2) instead of (1). From this it does not follow,
howéyer, that the equation (X Y, Z) = grad U must also hold
lr@ld'e the mass. Rather, it is still necessary to prove that
\differentiation under the integral sign is perrmsslble Enclose
‘the point P in a small circular cylinder with axis parailel to
the x-axis, of radius §, and length an arbitrary constant, say 1.
Let P be at the mid-point of the axis of the cylinder. Let V)
be that part of V which is in the cylinder, and V; be the
remainder of V; let the integrals over Vi and V2 be respec- .
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tively U®, X and U™, X®,  Then, since P is an exterior
point of Vs,
3 U(z)
ax
and this equation is valid for P itself and for points inside the £
cylinder, on its axis. Let P’ (%, ¥, ) be such a point; then by
integration )

= X ,

N\

U® (%, 3,2) ~ U’ v, 2) = x@ (¥, 2) db.) by
y y 1 8

Now it follows from (1) and (2) that U » 0 and(X™” 5 0 as
5 > 0, and this convergence is uniform for all\positions of the
point in the neighbourhood of P. Hence, f*we pass to the
limit, since X® » X uniformly, we maygnterchange the order
of integration and passage to the limif, 50 that

»

% *
Ue3,9) — U6, 888 | X3.9 a
,::.’. E
From this it follows immedigtely that

(8) - i;g EE = X.
2\ ax _
' Similarly the corresponding equations for ¥ and Z are proved.
Hence: The fifst derivatives of the polential U of a spoce dis-
tribution qf{cimtiuuous in the whole of space, and F = grad U

Art:\3. Poissen’s Equation

m‘i ) In the preceding article, we showed that U and its first

\/derivatives are continuous for ali of space, in the case of 2
space distribution, under the assumption that the density is
bounded and integrable and that S has a continuous normal.
We will now discuss the second derivatives at points in the
interior of V. We make the assumption that the density
* has continuous first derivatives as well as being bounded,
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and still assume that S has a continuous normal. When P is
outside V, we can write :

e 1 a2 Qe e

1)
- JSJ'_ cos (n,4)dS +”j ", "-x dV

by use of the divergence theorem, But this transfqr\matwn can
be shown to be valid also for P inside V sinegall the integrals

are convergent for such a point. N
Hence for P inside V \ o>

©) J’”—i- g—;dV ” Mds -

.;};3 Alx,y,2)+ Blx, 3, z)
Here A4 is the potential of }i's'pace distribution of density :—;

and B is the potentlal due to a surface distribution of density
—7 cos{n;x) on .S, \Thus both 4 and B have continuons first
derivatives evergwhere except on S itself. HenceI/ nas con-
tinuous second‘derivatives, These are given by
f ’;
\g}‘ff o4 , 4B

\ox dx

m ( ) ”fms(n x)@ds,
mfﬁ

axay

\ao)

fresin 522 ).

' ete.



134 - DBERAVIOUR OF THE POTENTIAL IN THE Mass Crar V

The second derivatives of the potential of a space distribution
are conlinuous ol peints both oulside and inside the mass, but not
for passage through the surface S bounding the mass. They are
indeed not defined at points of S. If the hypotheses on r are
met only in a sub-region V' of ¥ having a boundary with cond,
tinuous normal, we can divide the potential into two parts’ ¢

O
e fgere oo s
¥ Pl NG

0
If we restrict 2 to motion in V¥, then U’.':Ig\ds continious
" second derivatives from (10} while U"" has\pontinuous second
derivatives because P is outside its regiqr(‘e}l”integration; hence
U has continuous second derivativesdns V', given by (10).

From the formulas (16), we ﬁpd:: )
| N a(%)
e s @for ]
7 an
v < S
O [V=(£ 9 i)]
A\ Bt an oL

5o(3) _a(2)
AN = -
§3=—.'ﬂ' and r/ = ’ Qg

e N\t an 3t on

“:’; 1
o) "’(T)

\'} *—-—a;—cos(n,x)-l-..‘.

From the formula (36), Chapter 3, with « = 7, we have at
once

(11} . VIV = =~ 417p,
_ which is Poisson’s equation.
Poisson's equation is valid for all points P of V (or for all
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points in any sub-region of V in which the density 7 has con-
tinuous first derivatives). _

The potential of a space distribution therefore satisfies
Poisson's equation ot all points insitde the mass, and satisfies
Laplace's equation at all outside points. Neither of these equat >
tions s valid on the boundary. O\

Laplace's equation-can be regarded as a special case-of
Poisson’s equation, since it is obta;ined' from Poissor}“g’.{eﬁ’uation
by setting = = 0. Correspondingly, the integral for the poten-
tial can be considered as extended over all of gpace, with the
density 7 = 0 at all points where there arenovmasses. Then

- Poisson’s equation is valid in all of space\except those points
where 7 is discontinuous, or its first dlérivatives are discon-
tinuous, and hence certainly with theexception of the points
of Ssince 7 has a finite discontiguit}}_ (a jump) on S,

Art. 4. Continuity of Potg;i{iﬁl of Surface Distribution

We can prove thagy The potential of @ surface distribution
AN

s 2\J _ f_
A& U_” ~4s

15 also contipuous at the poinis P of S. Since ¢ is assumed to

be bounc}e@, ‘the absolute convergence of the integral U for a
point_P'ox S follows from (4). In order to prove the contin-
uity/ef U, we proceed in a manner similar to the proof in
Amts2. It is sufficient to sketch the proof. We cut out from

2\ Sa small neighbourhood $) of P, and call the remainder of the
\ surface S;. The corresponding integrals are denoted by U™
and U® then U7 = UW + U, By the use of (4), we find

that || < —;— when 5, is sufficiently small, and this holds

uniformly for all P. On the other hand, P is an exterior point
fol- U(?)'
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Art. 5. Discontinuity of Potential of a Double Layer

In contrast to the potential of a surface distribution, the
potential of a double layer is discontinuous at the surface
carrying the distribution. We will prove that: The potential
of a double layer,

1 O\
a (_) O h
(12) U=H,,_t_ dS=H#_mS_§££J is, C
an ¥ !
5 5 . o

7

has a jump in value o\ 4
(13) Up=U. =4m

on passing through S ot P in the directioig%f n.  We recall that
r is directed from the integration point Q:(z, 7, {) to the field-

point P:(x, v, 2); for simplicity W make the substitution ¢
for the angle (7, n), so that R\

(12%) U =ﬂ Boosy o
. 's

72

We first assumey that S is a closed surface and consider the

special case of a'double layer of constant moment u=1,and
hence study the integral

Yool
# \ N ; a __'
(14) D7 o= ”—3’_ ds =H"‘i§"’ds.
N § s
R\ “The discontinuity of Q is easily recognized when the geo-

CO&;‘& is brought out. We
¥

consider two spheres X 1and X of radius 1 and » about P as
centre, and let dw and d4 be the areas cut out on these by thle
cone which the area element 4§ subtends at P. Then it is

evident that d4 = lcos ¢| dS and dw = d—f , 50 that
r
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icos::/f ds or cos r:'/dS - 4 do

where the upper or lower sign is used according as the angle
between the normal and the direction QF is acute or obtuse;{
thus the integrand is the element of solid angle subtended at
PbydS. Hence it is easily seen that assuming P inside \S\",\

(151) 2 =J cos Iﬁds = — dew = — 4“-, "'( ".}‘
5

N

rt . £
s ..,\‘
if the normal is outward from the closed sutfdce S. For, any
half-ray directed inward toward P mustxpérce San odd num-
ber of times (remember that the surfa;c%us closed), as it must
eventually pass from outside to insidé; at the points where
it enters the surface S, the mteg’rh,na of (14) is the negative
of the element of solid angle whlch dS subtends at P. (Solid
angle of a cone is the area it® euts out on a unit sphere about its
vertex.} At any point 3 where a half-ray toward P leaves S,
the integrand reduces~ﬁs +dw. If a ray enters and leaves §
several times bef reachmg P, this gives a contribution
—duw + do—. . -?—%4 — dw = -~dw to the integral (14), so
that this integfal has the value of minus the entire surface of
the unit sphere.

If Qiﬁé’outside S, then (14) has the value
(152) . Q=0

\”‘smce any half-ray toward P must cut S an even number of
times if at all. Finally, if P is on S, at an ordinary point of 5,
we have ' -

{(155) Q= —2r

since the elements dw cover half of the unit sphere about P
(one side of the plane tangent to S).
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If we permit S to have singular points (finite in number)
such as the vertices of cones, then when P is such a point,

(15*3) 2= e )

where v is the solid angle of the tangent cone to S at P. Qf >

course (155) is a special case of (15*;). The equations ({15)

show the discontinuity of (14) on passing through 5. ™

i cos '
rﬂ

5 +*
. ment of the double layer at a definite poinr‘:}i\of S; write
I/ in the form )

\
dS; let gy l\ae’f;.t};e mo-

Wereturnnow to 7 =

r -~

RN
D
U =uAJ' °°5,"’d.5‘+”—-*_—(‘f , "‘;;) cos¥ i

or

(16) - — uQ =J‘J(p*%#4)coswds = f
. 5".’; v

r

We will show that f ren@:ins continuous when P passes through
S at the point 4., Asyuming this for the present, and letting
the subscripts —+4, 4+ denote the values of functions on
approaching 4 frém the interior, at 4, and on approaching 4
from the exbefior (positive side), we have
:O\n' oy

(= —dr, Q= {2 0, =0, f=Ffs=fp
Héqg&ff 4 is an ordinary point on the surface S,
N

NN

Yor
(17) U_.:. UA - 211'#.41 U+= UA + ZTFﬁA.

These equations can also be written in the form

_ U_+ drp, = Up= Us+ Zrpy

. (18) U+‘— U_: 411'“‘4’ .U.'i,-;-_br__ = UA-
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If A is a singular point of S, then
U.+drps = Up=Ug+ voqu
" or :
(17%) Up—U_=dups, U_=Us—{r—v)pa, Uy =Uy4 YR

If the surface is not closed, then we can enlarge Sto the
closed surface §', extending the definition of x in any artgt?ary
continuous manner over the added portion of §’. Thepotential
I/’ obtained by integrating over the extended surfdce\S’ satis-
fies the conditions (17) or (17*); but the pol‘\entlal -
cbtained by integrating over S — .5 is continuous at A (if A
doesn't lie on the boundary of the open sutface ), since 4 is
not on this surface, Hence the validi€yyof (17), (17*), and
(18) follows for the potential I of a’distribution of moment u
over the open surface S (if A doesn"t.Jie on the boundary of S).

We will now complete the p;‘éjéf by showing the continuity

of - f= '”(ﬂ

at the point A. Stkf‘;éﬁnd A by a small sphere K of radius §,
which cuts off théyportion Sy of S; let S; be the remainder of S.
Let f1 and f3 bethe portions of f obtained by integrating over

S1and Sywespectively. Let N be the maximum of |u — pa|
on Sy,.then

R {N” | cos ¥4 de-NU'COS‘” ds.

'.\:.

cosn}rds

S

\ The integral here is bounded; for let m be the maximum
number of times .S is cut by any straight line, then on account
of the geometrical meaning of the integrand, we have uniformly

J—-l 52" ! a8 < 4wm,
| ’
3
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so that [fil <4=mN. But on account of the continuity of
#e N> 0as 3> 0. Hence [f;| may be made as small as we
please by taking 8 sufficiently small, and this uniforrmaly for all
positions of P. But f; is a continuous function in the neigh-
bourhood of A since the surface S, does not contain 4. Hence™\
it is evident that f is continuous at 4. A
€ N\t
Art. 6. Discontinuity of Normal Derivative at a Strface
Distribution O

Let a distribution of density ¢ (continuous}})ﬁ a surface §
of continuous curvature produce the potential®’

.\\.

g ¥4

" - [[2 0
s

We choose a direction for thelniormal 71, at an arbitrary
point A of the surface (not aBoundary point if the surface is
open)}, and suppose that the field-point P moves along this
normal. As long as P i§'not on §, we can differentiate under
the integral sign, and"obtain

g (%)
(20) o ﬁ-[f=“a__L_ds.
\ n4 s 4

We Wi{ﬁ‘o\w investigate the limits of oy, when P approaches
AN Ny

'thg ';s:urface from the positive or negative side, and designate
4 .\' 3 . 6 U
”'*@hése limits by —* angd '?E: We will show that: the nor-
y 814 dny
mal derivative has a Jump
(21) a_—U+ - ‘——6U_ =— 41&'0"4
aﬂ A aﬂ A

when P passes through the surface at A im the direction of ny.
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We have
or ar dx x - §
——— e e, = cos (ng, %) +...
on, dx dny (4, %)
= cos(r, x) cos (nq, x)+... =cos(ry, )
r={ -t ..... 0.
1 ¢\
6‘(-“ ) : S\
—Y' = "']'-_COS ('nA!r)! ,~."'"w .
aﬂA r .,,.‘ 3
so that "‘"\'\‘
olU o v
20* —=—-”._cosn , ¥L.AS
@) any 2 o8 N
Introducing the normal ng at the ti;r’tegration'point'Q, we
can write o\
) 8U =_JJO_ cos (::Q, r) dsfj‘_&J‘J'a cos (ng, r) —cos(tiy, 1) s
6?3,1 . r . S Ny r
= U Un oS

Here the first integ\nalhb, is the potential of a2 double layer of
moment ¢ andibence from the preceding article we have

(23) \?f;+= E = 2r04. U= E 4 2woy,
where ;\x}. ( )
A7 p[[eegua g
o £ 704

7\
~We'shall complete the proof of the theorem by showing that Us
Nis continuous as P passes through S at 4.
Cut out a portion S, of S by a small sphere of radius é
about 4, and let .S; be the remainder of S. Then

Uy = acos(ua,f)—cos("d-')ds =F 4 Fy.
'2

S1+ 5

N\
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Let N be the maximum of |¢| on S, then

IFIi =N J [ |°°5(”as"op) — Co8 (”m?’QP)I as

z
;
5 oF

<N Icosa—cosﬁlds R
of o fz )
S s\
o2 sina;ﬁ sma-zi-ﬁ‘ '“:.».;:
=N - s\
oo r
S
~NY;
()
. sinltJl — Bl \"
2 ‘Q‘X
521\?” S dS
Sl c':n

By drawing through Q a li.riézi:;arallel to n, we have at ¢ a
vertex at which three faceS\meet with the face anglesa, 8,and 6,
where § is the angle between n, and n,. Hence § = |a — 8|,

7

so that N\
:Fq‘;\si;mﬂsi‘%@ 48 = a;J sn b
£ D 51

?'2
P\l 5

since B\ish:}’ small angle when 8, is small.? To simplify this,
asslinie'\t at A is the origin of coordinates with the z-axis in
thgd'rrection 1, then for a small region such as .5, the equation
\”"qff"the surface may be written in the form =2t n. On
account of the continuous curvature of S the function §
has continuous derivatives of first and second order.) Then
the third direction cosine of n, is

- .
41 15 4 positive constant, as, later, are as, . . . , au.
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1

v GG+

cos B =

so that :
fasNg  farvng O\
sin § = ,‘/(ﬁ.)2 + (QE)E
9 \:\’
o _dF _ A
Since at the origin 4 we have ev1dently —= == =\0we get
by Taylor’s formula o a’f'“f 3
8¢ _ %k an) Pk an) gy <
2= 2 @
3 £ Py + 73 % N
so that ) x'.\\“
ac af

< 2aqr:

of
because the second derivatiagféjs} being continuous, must- be
bounded in the closed regio&' Sy, and evidently

o <r =VEF7+G -0 et
Hence sin 6 < 3ay s\: that

\\ {Fli E a4 JJ aqr aS

A/ _
’t\.": E“*J %,
:"\." ¥

’\\ .

andfrom (4), this integral may be made as small as we please

\bY making § sufficiently small. But #; is continuous, so that

\ ) “the change in F; may be likewise made as small as we please

by taking P sufficiently close to 4. Hence Us is contmuous,
completing the proof.

. The equations (21) and (23) can be proved under Ilghter

hypotheses on the surface S. Using the same axis system as

above, introduce cylindrical coordinates £ = cos ¢, n=Ilsin ¢, {

- N
= ¢, (¢ + Inl) < 2aor, and\similarly .
W 7
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and assume that the surface in the neighbourhood of the origin
A can be expressed in the form

F=1"1%06), >0,
where g has bounded first partial derivatives. (This hypo-
thesis was fulfilled above with 8 = 1.) Now \
R_Ex _nd a_ax e
% lal Pag 8y 1l PFoap O

= 1+ I’ ll-l-ﬂﬂg_ a_g- ;l+Bag
(1 +8)Fg + 3 6¢ n\a&
ar

< alP,
ot

&3 ad’e and hence
’7

From this it follows that

sin 8 < al® < ay®, since obviously I.‘:E 7
We thus obtain 1R < anﬁj:‘g_iﬂ
- N % r
which may be made arbitrar‘ii)'r" small with &, from (4%).

Remark: The valqeét A of Uyis
Us(d) = J \ms(”O: Toa) — €08 (ny, rgs) is.

f’QAg

Taking into. Qc‘:ount the continuity of U, at 4 we get from
{22) and (23)

(‘8
\ 3 6n4

e A\

Ve e
N\ %,; = U+ Us(4) = 270, + E + Us(A).

Since obviously
E+ Uy4) = - ” s (%41 704) 45
fQ A

U1++ U:(A) = - 2TFG'A + E 4 Uﬂ(A)r
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we obtain the two equations
J U+ — ._2“0_‘4 _'[J cos(ﬂ-A, rQA) s

r!

@1%) o4

' q_[.{: = 210'4 - JJ CO—"———“S(”;' rQA) dS. N
5

Tea RGN

From these follow not only equation (21) of our theor.eiﬁ\bu’t

vy (L4 2E) - - [[lptedys) 3,
5

A
ony  Ongy 24

Art. 7. Norma! Derivative of Potential oi\\a‘Doub!e Layer

We will next investigate the behd¥iotr of the normal deri-
vative of the potential WV

«)

9 (_}.) ) -
U= ”#___’ s = ”pc"a_-—-—(””’)ds
on' r?
AN 5 .
of a double layer ‘o\f(éc;ntinuous moment p at points in the
neighbourhood of\.S. Assume at first that § is closed, has
continuous cufyature, and that s is directed outward. Let
Pi and P, be.points on the negative and positive sides of S,
locat:;g)\ﬁ\i:he normal n, at a particular point 4 of Sat egual

dista 8 from 4. Then we will first show that -
2D (E) —(ﬂ’r 50 as §50.
\ 3} dn/p, on/p

Of course it does not follow from this that the separate limits

of (ﬂ) and (‘Ej exist. However, we will pfove later
In /P an /py

- that this is true under more restrictive hypotheses on g.. Qf
course it does follow from (24) that 4f one of the separate limits
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of (%Ej exists, then the other must also exist and must haye
R/ F;

the same value,
For the proof we again assume that the point 4 and the .

+ normal at 4 are the origin and direction of the z-axis respec-
tively, so that the (x, ¥)-plane is tangent to S at A. “The,
potential at points P:{0, 0, £) on the normal then becafties a
function of z, say Ao

< )

(25) - U0,0,9= F&). (D

Then we wish to prove that
(24%) Fl(s)— F'(—3) >0 as 2 3;{}\.'

We can assume without loss of generality that u vanishes at 4,
since ' g >

U= ”u 4 dSJ-l'-‘”'(n — pa) —"2485;

on L on

5 \~ ’ 5

the first integral herehas the value ~drp 4 at all inside points,
and the value 0 gt\all outside points, so that its normal
(_lerivatives are both zero and hence satisfy (24). The second
integral is the'potential of a double layer which has the moment
Oatd. O

."\'Q. .
The{q’quatlon of the surface in the neighbourhood of 4 can
be written

5" C t =i,
Novhere this function has continuous second partial derivatives.
: _Thenattheoriginwehave.5=n = ¢ (0, 0) S
80 that 9t

rep®ha) o B @b ) o (ak, an)
=g 2 BN AN 4o 1 @Y 2 ) 0<e<l.
- an o okay 17 a0
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lntroducing'cylindrical coordinates

) tE=lcosg,n=1Ising, { =¢,
it is evident that for a sufficiently small Iy, there is an M such
that

(27) [t < 8M,

a§'<zM for 0 < I =1, R
H o\
The value of I, will be fixed later. Let S; be the part of’S\ﬁear’
A for which ! = I, and let S, be the remainder of S, and let

@8) U= pr as + ”p‘ﬁg—”) dsggi};} U,
Sy S
SO

Since for the normal at Q we have n;: ns.ha ==
\ 3t on

then cos(r,n}d5=[nl.££__9+ 1_(3"_'1) +ﬂs-( rg)]dS

(t—x) E.—H«r y) +z-s“

d.S,
1/ 1+ (G +-(5’5) |
\\... Y o
then
+ (n— 3’) P Cye—¢
Ul RH A 1 dkdn,

where the‘mtegratlon is over the prolectwn of S; on the (x, ¥)-
plan.e Hence, for P on the z-axis this becomes

\
QY £§+n§+ s—t
29) m@:”pﬁ i dedn = Us (0,0,3),
or i.{.z_r

(29* ) =” A e
: F@ = | e o
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For compactness we let g = — then

I' r ..\
(20%%) P = (10| e ~

] L] :’s >
and hence 1 \ \ \J)
@0) R L] I

2 ug' i'
r =1, and recall th&\t
foz

AN
r=VE+ -0

When the point Q:(, 7, ¢) approdchés the origin, we have
§ 0,723, ro» |3} s0 that r+£yand A > 0. Finally define
N by the equation O

Let?'a ='\/p+82.k=

WS

.:‘N
LOSSY N
-

f—;.,:-é:(l e R VL R I
QY 2

/

for ) g\*i‘\ffom which it follows that ¥ » %— ; hence if J; and

theg@é' A is made small enough, we will have 2 < ¥ <3,
~ " We now investigate the integral

~O
ey Fy(z) -.”2 ;f:ii_zz udldg =
o

odo
s f2r 2__ a2
NEERSSR
oJo \gsz o

© and need therefore an inequality for
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;(ig R 252) _ ;[‘2“ 2(z—¢)? _33—253] _BB(—¢) 3

3z 78 8 re® " 3l
8¢ ot | . B2 ot -~
Now r5 6_1'1 —= -"15—'- Ei < 3m fl"Om (27), ‘
|3t ac| _ 3laldd _ 4lsib A
i 3l r2 i f02 ’\ "
since, for - » 1, we can choose Jo smail ‘enough so that N “
o o .\‘
A fr0 <l <h
rt 3
Moreover, " x\\
1[12 —2( ¢ B- 223]\
re ?'05’. NS
=L -26- me ) — Bt 28]
0
E

RPN :\2&. — 0 — 24 42f]

{Nﬁv 96 — 0 4 24l

since -~ 22 -{- 4zg' —2(r2 — r¢f) = —2\r%.  Now
N(zgm 2(z ~ )N+ 2rid < 2ret+ 2NP+(s — 1))
”.'\\ et 2Nr2 < 212+ 6r2 < 9?'0

,” .
fof \srnce —_ —> 1, we can assume that—2 -6~ for 1o sufficiently

fy
\small F rom this it follows that
I l[zﬂ -2 - _B-— 252] < YNre®
Pl rnﬁ f05

<9—1¥<9(M2—_§-2_M1ﬂ,),

o Fg
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if we note that

o = 87 =288 _ 22 + 2]

< M 4 20|
foz 12

< Mard - 2M|z| .
From the above resuits, we find
Yo

oz ?‘o

\ s

<

< 12M + 24M @ SR

?'02
Hence

' N\
v J2
Fl@) — jJ z‘—?iudtdqb‘< K¢

J' r (),21!4’2 + 24M|12|) |uldide
0 ,'.‘:. ’ rr.‘l

% [2x » :’.’ y e [2x
< fim [mﬁj r dlde 4 24 M J J Il dldqb]
o 0\ odo I 4 7

where g, is the maxifolim value of |#| in 8. But

L I -
dl <D = = = —y
j012+22 \ A di J'o oy arc tan « 5

since Izi #”ﬂ. We get finally
(32) !F (z) — Jr ! gdldrﬁ[ << —2—,um,

»\Where ¢ = 48M2xl, 4+ A8 Mn2, Exactly the same result is

reached if we replace z by — z, since ll

z?
is an even func-
fns
tion of z; hence

4 h [2x 12 _ 2
(32%) Fi(=2) -I 3 ,2z pdld¢‘ <L
: oo s 2
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By combining (32) and (32*), we get
(33) |Fy'(2) — Fy'(—2)| < Cpm.

Now it is easy to prove (24) or (24*). Given an arbitrary
positive ¢, we first choose 7, small enough so that the maximuny

im of [u] on S) satisfies the inequality cum < E- , which i 15, pbs

sible because p is continuous and vanishes at 4, and ¢ is
bounded no matter how small ! may be. [t follqus “that

|Fy'(@) — Fy (—9)] < _‘;; for & ;eb

But for Fy(z), 4 is not on the inte m’lson surface, so that
Fy(z) is continuous and we can ﬁnd vy small enough so that
for 0 =iz =3,

|Fya) — {;gl"z)l <+
We finally obtain for 0 < Jjalt = &

(34) By — P(~2) <&
the desired resul’t.’\'\‘“

In case .S i an open surface instead of closed, we proceed
as before td extend it to a closed surface with the definition
of u extended ower it in a continuéus manner; it is then seen
that tﬁe“equatlon {24) is valid for open surfaces as well as for
closed ones.

We now assume that the moment u on S is not merely con-
\ ’tanOUS. but that it has continuons first and second derivatives.
Then the normal derivative of the potential of a double layer

(35) U=jjp‘?£i)ds
5

on
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approaches a limit as P approaches the surface from either side
at any point A not on an edge of the surface S. From the pre-
ceding result these two limits must then be equal.

To prove this, suppose that P lies on the positive side on
the normal at 4, and surround 4 by a small sphere which
contains P in its interior; designate that portion of the volitgne
of the sphere which lies on the positive side of § by Vyandiet
S’ be the total surface of the volume V. § consists\of“a part
Sy of §in the neighbourhood of 4, and a part § of'the surface
of the sphere. Suppose that the function whieh is defined
on S is extended into the space V, so that this extended func-
tion has continuous second derivatives.. IB"other words, we
use a function defined in V with congfmitous second deriva-
tives, which becomes the given functiéi i on S;. For example,
the function could be extended in suth a way that it remains
constant along each normal, or ofi parallels to the normal at 4.
By applying Green’s formula.{34) of Chapter 111 to the func-
tion x.and the volume V, wig'get

1) o, oL L
(36) Lj#f%;)\ig=ijui&)ds+'£[p?—g?%)d$

& Lj” %45 J-U L V8aV st (P)

\

Being' the potential of a continuous space distribution,

~ff[ 1 . -
\/ IJ-’,— V2udV has continuous derivatives everywhere, and so

(1)
d "
as

an

does the function —47u(P) and the function JJP
S i

since 4 is not on the surface S. Also the potential of a surface
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distribution ”—i- gﬁ 45 has from Art. 6 the property tﬁat the

. s :
normal derivative has a limit on approaching the surface.
Accordingly this follows for the one remaining term ,

RGPS

an A\
and hence for AD
1 ~\°
i (—) ’
(87) U= JJ NS as N
om PR
S \‘~

as we wanted to prove. Likewisethe'normal derivative of U
has a limit when P approaches 4\from the negative side; and -
these two limits are the same,\ ™

Art. 8. Asnalogous Tl;goféh:is for Logarithmic Potential

The following the&*ems for logarithmic potential can be
proved by the méthods used in the last paragraphs.
The potential® :

(38) A U:J-—[gloglds,
7 r
:"\.s. T .
wk&féh‘"is @ region bounded by a closed Jordan curve’ and a-.is
bowunded and integrable in T, 15 finite and continuous tn the entire

~\ plane except at infinity. This is true also for the first derivatives,
' which are given by

1 1
3 (1og —) , a (log ~)
(39) %:JJ.O. rL4s, 8l .—_JJ-J_—'—- dS.
dx E ax dy g dy

*0r by several Jordan curves. The region may of course be multiply-
connected,
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If the boundary curve C of T has e continuously turning tangent
and the density o has continuous first derivatives in T, the second
derivatives of U are continuous both inside and outside T, bui not
or its boundary. They can be found from

| : i 1
A )y

QY

6x§ ‘-E o% dS + ‘T o Cos (ﬂ, x) TBS'
(40) T ¢
a2 U J.J ar ; £ A\ _'»':—
== —_— =48 ) ———L ds,
oxay . % 5 + ) o cos (1, 8) % 5

LN

In the region T the potential [7 sati.gﬁ.es‘\ Poisson's equation
(41) ViU = 2%,
If the hypotheses on & are.not satisfied in the entire region
- T, these properties still hold\in the sub-regions where they are
satisfied, ~
The potential of c{uji}npk distribution on o curve
(42) v = j ylogLds,
A r
N/ g
if the curvedtas’a continuously turning tangent and v is bounded
and £n§agr:bﬁle, s continuous for all finite points of the plane
tncluding passage through C, If C has comtinuous curvature
andx is continuous, then the normal derivatives of U approach

diomils when P approaches 4 on C from either the positive or
\megative side, whick salisfy the egquations

(43)
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If the curve C is not closed, it is assumed that A is not an end-
point of C. ,
If the hypotheses of continuous curvature of C and con-
tinuity of ¥ arc only fulfilled on portions of C, the equations
(43) hold on these portions, end-points being excluded. This
is easily proved in the usual manner by regarding U as the
sum of two potentials, Instead of continuous curvature, j\t"is,\
sufficient to assume that € can be expressed in the form\.

) = 5
where « > 0 and g{x) has a finite derivative, when?tl}ke point 4
and the tangent are taken as the origin and\the x-axis re-
spectively. Ry N

The potential of a double dz'szm'butiqzr}j}a line C,

a(log_}_) v~’ X .
(44) 7 = J- u N T/ ON —[p cos(n, r) ds,

an JF r
I A

if Chasa coﬂtinuouslyirz}ning langent and p 1S contInuous, has
limits on approaching.C from either side (except af its end-points)
which are in generghdifferent from each other and satisfy
45 HUNZ U = s, HUs+U2) = Ua
If we perm{ﬁ}' to have a finite number of corners and 4 is at
a cornery then
WM (U — UL) = mug, YU+ U) =(m—Ba + Uss
{iﬁlére # is the angle between tangents at A.

If C has continuous curvature, we can prove that the

normal derivatives of (44) satisfy

(46) fim {(&’) _(QE) }= 0,
530 an/pe \Non/m

where Py and P, are at the same distance & from C on opposite
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sides. Finaily, by aséuming that g kas a continvous derivative,

we can prove that the separate limils (‘Z—U) extst and are equal,
\on /e

Art. 9. Dirichlet’s Characteristic Properties of Potential
We are now able to derive the characteristic propetties of
7'\

the Newtonian potential

U“”JI‘L",
r ‘O

N
which were first given by Dirichlet, Thes‘;éi'\conditions are
characteristic, in that they are necessary and sufficient con-
ditions that any function which satisfles them be identical
with a potential I7 of a mass disteibution. We assume that
the density + is piece-wise contifivous with piece-wise con-
tinuous first derivatives in théwhole of space and vanishes
identically outside a sufficieritly large sphere about the origin,

g0 that the above integralimay be supposed to be extended
over all space. A

74

Ny

The characteristic f}roperties are the following:

L. The Junciion s continsious over all space with continuous
first derivatives. )

1. The setopd derivatives are confinsous everywhere except of

P\ .
surfeces\'of discontinuity of =, gr o 97 . They satisfy

VS —darr ax 5’ dz

’ \III ForR =V T3 42y 0, Us 0and RID,U| is bounded.

e

Instead of the boundedness of R¥D, 1|, it is possible to use
the condition that I/ behaves at infinity like the potential of
2 mass, more exactly, that

e (u- )

where % 3 ¢ and R Dyu| is bounded as R 3 =,
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That the three conditions are necessary, or that the poten-
tial J.J-J T 4V satisfies them, has been proved in Arts. 2, 3,
) - .
and in Chapter I, Art. 6. ~
That they are sufficient, i.e. that a function U7 which

satisfies them is identical with a potential ” Z 4V, niay_be
r @ M

shown in the following manner, On account of tllp~f1;'dperties
assumed in I and II, we have from (34), Chaptel‘;’III:

) VA
= 2
o= [[ (222 - 02 (3) )as T 20
r dn \\ 4
g aﬂ '\x:. ¥
Here V is any region containing P ifjts interior. We choose '
for V a large sphere about the’qr'igin, and let its radius ap-
proach infinity., The surface intégral vanishes in the limit on
account of the conditions IIf.3"
Hence we obtain in thelimit :
i y
%-,r:g = - '” U av
¢ ’\ r
where the integre;.l\‘is over all space, and since VI = — 4x7
from II, we have
O v=|{lZav
R .l' J ro
whic}\\ia\tlie desired result. _
. Dirichlet used these characteristic properties on the famous

) (reblem of the determination of the potential of a homo-
\'\; geneous ellipsoid (see next Art.). '

/ For the logarithmic potential

o [fomn()s

In which & and its first derivatives are piece-wise continuous
in the entire plane and vanish outside a sufficiently large circle
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about the origin, the following properties are characteristic:
I. The function IV and its first derivatives are continuous
everywhere in the finite plane,

II. The second derivatives are continuous everywhere except

on lines of discontinuity of a,?, g—g. They satisfy 720} O

—~2ra. x oy oA\
III For R =Va+ 33w, (U +Rlog = %).}.\0 and
R|D1 T is bounded. R a{e )

Instead of the last condition we can use ti.le\&ijndition that
U behave at infinity like the potential of a ni¥ass, more exactly
that .U is of the form N\

1 o
U= Mlogi +u (M:‘J"]—ad.?)

where z » 0 and R2|Dsu| is bqt}n:déd.
The necessity of these coti“difions {follows from Art. 8 for
I and II, and from Art. 6,.Qhapter I, for I¥1. In particular,

T
L 3 %

it follows readily fron{fthé representation U/ = M logmé- +u

with # » 0 an_d’m’lﬂ bounded that I/ + R log % j—g-r 0,

. i 1eU 1 du
since U 4"B-log —- — =u + R log — ——and « » 0,
s 8 ReR ®ROR
.”\‘0
\O - Rlog R0
O LT

v That the above conditions are also sufficient can be proved
as in the case of Newtonian potential above (the reader should
carry this out). We will later (Chapter VIII, Art. 5) prove
that the existence of lim % implies the boundedness of R?| Dy
hence the last condition may be written simply

II*, ForRyw, U = MloglR 4+ 2 where u » 0.
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" Art. 10, Applications

1. In Chapter 11, Art. 9, we found the potential of a mass
distribution bounded by two concentric spheres, with density p
afunction of the distance R from their centres, at poirits outside ~
the outer sphere and at points inside the inner one. We can
now find the potential at the points inside the mass. O\

We will first find the value of the constant b found there,
as the potential inside the inner sphere. This can readily be
found by integration, as it is the value of the potential at the
centre, which we will take as origin. If /; and li’are the radii .
of the spheres (I, < 1),

b xi\\:
b= Up= J”% av = 4«L.&‘(R}dk.
If the mass is homogeneous (or p cdnstant), this becomes
b= 2rp(Li 112).

Ata point of the mass, the potential satisfies Poisson’sequation,
and since U only depends'on R, this is

L —
NiR: ' RdR

This is an ordiaty linear differential equation of the second
order, nor}{bbﬁlogeneous. The corresponding homogeneous
equatio@as already been integrated and has the general solu-

LA . .
tlon.—ij’. *+ B. By adding this to any particular solution of the
7"\

7N

\r:}ri-homogcneous equation, we get its general solution. -Hence
hen pis a constant, we find

U=— 2rpRE

A
2 4+ B
_f.. +

since —2rpR?/3 is easily seen to be a particular solution of the
‘non-homogeneous equation. '
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The integration constants 4 and B are determined by the
continuity properties of the potential. The potential U/(R)
must be continuous on passing through each boundary sphere,
so that

QY
_ 2wkt + + B = 2mp(ls — It?)
3 O\
21!'9322 + + 41'rp (12 1) = \:\ .
-3 3\2‘.;‘.
These equations have the solutmns \\
3 \J
A=-20 p o ordg
o
so that if » is constant we have the ‘pﬁ:;téhtial function:
| 2xp(let— 119 § : : for0 =R =]
2wpR?  dwpl® 1 1y
U= _%_%1_ v—RZ:-.&z"'Plz? “L=R=h
47’9(123 - Iis) }_: ol = R
3 R

For the special Ea\tse of a complete sphere of radius { and

tniform dens1ty, weset 1= 0, ;=1 and get
N \
3 2

——3‘? R+ 2mp  for0 =R =]

’\.. U=
’.;\ dxpl 1 “ =R
AN "3 R

yOf course the result can be obtained also by direct integration.
Split up the mass distribution into thin shells bounded by two
concentric spheres of radii ! and ! + dl. Show that the po-

tential of such a shell is ‘."1’%2@ if R = 1 and ﬁ@f dl =

4rp(idl, if R=I. Prove that the potential of the given mass is
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U=4r | p{)ldl forR =1,
of & ) .
4r [R a '
U= —Iéu p(Difdi + 4n JR p{Didl forli=R=L
Jh , o
4 [ M
=_ p(l)l“dl =__ forls = R. K
R J R A\

Put p = const. and find again the former formulas

2, Mass distribution bounded by two concentrlc c1rc1es
attracting by the inverse first power law witl ﬁknmty‘ depen-
dent only on the distance from their centre, Find the poten-
tial at a point inside the mass, (N

3. Solid homogeneous ellipsoid. ‘D'é}sity r=const. Equa-
tion of the boundary surface E  \J

2 2 2 &N
{47 _"’,24_1 LR S a=b=c
The potential U at anypoint P(x, ¥, 5) is given by a triple
integral in the usual gy but we shall represent it by a simple
elliptic integral. <Khe equation
x2 + y2 - 1

R A =k u"

I'Bpreseuté’; set of ellipsoids E{x). The parameter % is sup-
posed-tb Fange through all non-negative values. Eisobviously
1d8nt‘°31 with E(0). One and only one E{x) passes through

~ (31Y point P outside E. Accordingly  with the restriction
\J* = 0is defined by (48) as an implicit one-valued function of

Ply,2)4 Let g(w) =V (@) (B + “) (c*+u) and rabor = &.

72

€ state:
) () = kr’ A =FP.7) 4, for Pinside E,
—_— ¢ gl

‘Itisoneof the 3 ellipsoidal coordinatesof P. We donot use the others.
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(49) UP) = k_Eo %%”_ED d  for P outside E.

We sketch Dirichlet’s proof that the characteristic conditions
{Art. 9) are satisfied. £\

I. Uis obviously continuous over all space, even as P pas’sqs

through E, since # =0 on E. For P inside or outsgde E
. respectively

G0y Yo o r'_d_”_ :

dx a (a®+v)g(v)
and au ..-—- 2kx J‘m dv .—".k\]" — P, ) &_z_t,
. I (a*+v) g(v) \\¢ g{n) dx

but 1 — f{P, %) = 0 since indeed Plles on the elllpsmd E(u).
Thus for P outside E R \\

o o
(504) %{f: ..2ka W dv

x @+1) g(n)

Therefore Eg and\l{kaﬁrlsei—y and 1Y are continuous every-

o"'
S D

# £¢2)
‘.,'\\'

dx 3 0z
where. O
Dadr @
i 1Y - —2kJ — % for P inside E.
ot o (a4 v} g(v)
(513 —Ej = -2 2kx 9 for P out-
AN OxF (a"+ %') g(®) (az+u)£(u) 0x

@\ w 2 2 .
\ sside E, Therefore ‘E{T and likewise *v and *U are contin-
- oat dy? dz?

- uous everywhere except at the points of E. Moreover, for
inner points

’ dy
AU=—2kJ- ( 1 1 1 )___
0 a2+v+bz+w+62+%‘ g(@)
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Prove that .
' log | 17 1 1 1

o Lot 111, L

gl») de dv 2\at+v ¥4v 24y
and infer

- @ dg m‘j:k X s\‘

53 AU = _4kj _—=—— = —411-1-. ) \..‘
(631) £(0) g2 2(0) ' O
For P outside E - ) ,‘.}‘:

©f 1 1 1\ da'C
= —2k
AU L (a2+w+b2+v+cz+v) g(»v’)

2B x du y au\\ 5 ou
+ == o e i e b e
glw) zax + 9 2

Q‘J’-i—u 24 u

The first term on the nght equals — -‘:— (use again (52)).
\ g(u)

_Ta reduce the second term ﬁnd the partial derivatives of u by
differentiating (48), ng\gnstance
2 \x\% " 32 + 2 ) du _
Fru \@tor  Gtwr | @t

~ Determine 763“.\ 8—# % nd prove that the second term equals
:t\aﬂf By az ,

\Finally

g( )
"\(“\32) AU = 1),
\ 3

Ii1. If we put\/x"‘+ ¥*+ 2= R then obvious!y‘\/c”—i- u =
R = ‘\/a2-|- %, for the distance of the point P from the origin
must lie between the smallest and largest semi-axes. Since
lim Yt

e gty

= 1, we have obviously
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Vaidtu -
R

lim = lim

1,

‘\/c*+ %
R

so that the semi-axes and R are of the same order for large u.
Now consider the potential U/ in (49:). The term 1 — f(P, 1}
increases monotonically from 0 to 1 as v ranges from u to «y

: “ do ® v 2k O\
thus U < kJ —_— =k J‘ = . Jvie
e “ 8) NZE T A
RUis bounded and of course lim U/ = 0. Moreover fram (50,)
Ry A\, 3
w0 &
‘ﬂf | = 26l J — B
dx » (@4 v)(c*+- v)¥2
© dv _ 4 :1\\% lx| )

=< 9 _ w4
g J.u (B4 0)¥2 B\ (4 w)*?

Since (¢4 #)*? has the order R? ggn(:l"-t-;%i =1, it follows that
al/ al
a_y dz

4. Method of elecir\l‘c images. Given a grounded plane
conductor 5 and a\point charge ¢ at a point Q outside the
conductor. Chdrge is induced on the infinite plane. What
is the potentialll7?

Take the“plane § as (x, ¥)-plane and Q on the positive
z-axis \!Q'ﬁh‘éoordinates 0, 0, a. From the theory of electricity
it is Kpjown that U = 0 on the conductor, i.e. for z = 0, and
alsafor z < 0. Let ((0, 0, ~a) be the image of  in S and

{«;})la'ce the charge —e at /. Then (p?= 27+ 3?)

ReaU

-— and R®
ox

is bounded. Likewige R?

G4 U=F5 ¢ - ‘ - 2
QP QP Vet —~gr Vot(z+ar

is the required potential at a point P, v, %) of the half-space

T with 22 0: we have obviously U =0 on S, because QP =Q'P
if P lies on S,

Q"
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Find the density o of the induced charge at any point
Pul#o, ¥o, 0) of S. Use equation (21) in Art. 6, considering that

[&Tcoincides with éﬁj Obviously U =0, since U/ vanishes
on az a3

" identically for 2 < 0. On the other hand, calculate a:r+
B\
from (54) and infer R N
eq « \

7°%&

T T eV e Fat

't P

a

5. Given two grounded parallel plane conduct"'a}s S1and 5,
and a point charge ¢ at (0 between the pla@s. What is the

» ' 4 ¢ ’\
potential? Take S;and S»as the planesz. = 0andz = g respec-
tively and Q on the positive g-axis, wath coordinates 0, 0, ¢
(0 <o < g) If we place thqgl‘i’:ér'ée —e at (0, 0, —a), the

image of Q in Sy, the potential*will vanish on Sy, but not on S,.
If we place, at (0, 0, ¢ —apand (0, 0, ¢ +a), the images of Q
and Q' in S, the chargés’—e and e respectively, the potential
of the four chargeg,aw\'ﬁ vanish on S;, but not on 51. 1If we
continue in this way the z-coordinates of the next images are
"‘_+ a, -—co-f-:ﬁ, then 2¢ — a, 2¢ + @, etc., and we obtain
an infinite 'se;ri}s of images with ever-increasing distances from
Si1and S%These distances range through all numbers ne + @,
“—@m'=0, 41, +2,....] and the point charges are ¢
’an;L\’:-? respectively. The effects of these charges are ever
\ges‘:reasmg with increasing distances. Accordingly, the re-
uired potential is given by

U= +E°° ( € € )
xmme \V/ g2 +(z —nc —a) Vpi+(s —nc +a)?/’
Where 2 = y2.4 2,

Prove that this series converges absolutely at any point dif-
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ferent from Q and its images, that it converges uniformly in
any closed region not containing such points. Infer from the
uniform convergence that U is a regular potential at any point
except Q and its images by using the theorem in Art 7
Chapter VIII, after equation (36). This theorem is, of coursé, >
valid for Newtonian potentials also. Show that % = ¢ onS;

and S;. Find the density of the induced chargeon S yaéﬁ':&,
applying again equation (21) in Art. 6.
F 4 “&
'\\ ’
. \ S\/
N\
oV
va

P
\\
A\
'..\\.)
N/
£
F 4 Nudf
A\
o
O



CHAPTER VI

R_ELATION OF POTENTIAL TO THEORY OF FUNCTIONS

Art. 1. The Conjugate Potential ~ \

In this chapter we shall deal entirely with logant*hm:c
potential, not with Newtonian potential. We will discss the
relations which exist between logarithmic potentral and the
theory of functions of a complex variable, relations for which
there is no paraliel in the theory of Newtonum potential. -Our
starting point is the equation ((20*) in Qhapter III)

[ u ds = 0,
an ™

s W0
where the curve S is the enﬁfe boundary of the region T of
regulanty of the pOtEﬂtld:l %, which region we now assume to
be simpiy-connected. I{ we let C be any closed curve in T
withoit double poi fg -composed of a finite number of pieces
with continuouslxturning tangent, then we know that

(1) P\ r du
" J an
Y <

For d‘éf%ed open chirves, we will assume that the normal poinis

10 thevight side of the curve, and consider ds to be always postlive.

~l Py and P are any two points in T connected by two curves

€1 and C,, with continuous tangents, which together form a
closed curve Cin T, then

[ [g ar[zene

c

where the integration is from P to P on C1 and from P to Po
167

ds = 0.

QY
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on C;. Reversing the direction so that we integrate from P,
to P on Cy, this becomes

— | % 4
@ i"_" ds_—'[ “ ds

The integral o\ d

then has the same val@e for all paths of the above type from
Pato P. Hence gl;e}alue of the integral depends merely on
the position of \ghé"'points Py and P, and not on the path
used. If we Hold the point P, fixed and consider P:(x, ) as
variable, théfunction #(x, y) defined by
AN\ -
@ 0 o =J % g
.;\\..

i8)a single-valued function of (x, ¥) defined throughout T.

ow

o
(4) —n=n-Vu=m?-§+nga—“=cos m@-i-cos ag

dx dy dx ay

where a1, as are the angles which 7 makes with the positive
x and y axes. Also '

{5) €os aids = nids = dy, nuds = — dx,



Art. 1 Tae CONJUGATE POTENTIAL 169

so that
P
du du
r = —dy — — da:) .
© .Ln(ax dy
From this form of v, it is seen that . A\

du dv du SO\
0 sv _dw v _ %% e
- dy dx ax ay S

« N

To prove this, we form

S . O : .
du ou Y\ VW
vix + k)= J-P (acdy —E;dx),\

where P! is the point (x + &, ¥) which isxi&fl; if b is sufficiently
small. Now since our integral is ind,el:iﬁdent of the path,

P P ()P P
vix+h, 3) ~v(x, ¥) =(J +:[».’~" —_ J ) a—z—tdy - —udx)
Py NP Po/ \O% ay

P SN
=J (._ Qﬁ)gx L _p e g0y
PNy dy
by the mean value tl{"g’;}rem for integrals, so that

6_9.;\-\ v(x + b, y) —o{x,y) _ _ 94,

= lim
a{\fs k30 k : ay

The othe;:{qﬂation (7) is obtained in a similarmanner. From
(7) it{)'pp“rs that
O

R R v _ u
~O b awdy’ ey owdy’
\ 3 and hence
(8) Vi = 0.

Moreover, from (7), v has continuous first derivatives, and in
f:act we find that v has continuous derivatives in T of all orders,
since # does.  Hence » is a regular harmonic function in T
we call it the “conjugate potential” to u. It is defined by (7)
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except for an additive constant, and completely defined by
{3) or (6}, with the condition 9(xs, ¥0) = 0.

The potential conjugate to v is —u, since
H-w) o0 w9

1 ‘\
ay ax Jx ay N
¢\
From (7), we have du :&—ﬁE — 'E? . This is the Qé}ldiiion
dx oy dy dx

that the curves % = const. and # = const. be p‘erpendlcular
{the reader should prove this). Hence we canxggard the lines
#% = const. as the lines of force for the\equipotential lines
v = const.,, or conversely we can regar \the lines v = const.
as the lmes of force for the potenualsg We have previously
defined the lines of force as the 30lutions of the differential

equation dy : dx = du ou 1ea\tmg undetermined how this

3y ax'
equation was to be solved,\ “Wow we are able to find the lines
of force, and hence the goliition of this differential equation, by
integration of (6). ¥ 'fact, the equation v(x, ¥) = const., with
yregarded as a priut function of x containing an arbitrary
constant, is thenéeneral solution of the differential equation.
For the equ{'s:tmn, on account of (7), becormes
ay ”@:\——1 v dv B — dx +~— dy =0, dv=0, v =const.
} ax ay 6x dy
ﬁ‘he equations (7) are the equations which are well known
m ‘theory of functions as the Cauchy-Riemann eguations. In
\”\3 ~*i:he theory of functions it is proved'that: the real and smaginary
parts w and v of an analytic function of a complex variable
% = x -+ 1y,
© 1) = ule, )+ i, 3),
satisfy (7) and therefore are conjugate functions; and conversely,
the combination u -+ iv of & harmonic function and its conjugate is
an analytic function of 5. The region of regularity of f(z) is the
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region T of regularity of # and ». It is this theorem on which
the relation between potential theory and theory of functions
is based. We shall sketch the proof of the theorem. A func-
tion f{s) =# =+ 4v is called an analytic function, regular in the

region T, if it has a continuous derivative -

him Af(ﬁ) f(z + &z) f{Z) f’(z) p ,\:\
ArwD AZ Az-ro Az £\

at cvery point of . The limit of the difference quotlent is
assumed to exist regardiess of the way in which Az g Ax +
1Ay approaches (. m\

Now let f(z) be an analytic function. Pifst put Ay =0,
so that Az = Ax, and let Ax» 0. Then N

u®+A&w+W®+&Lﬁ*ﬂnﬁ—Mmﬁ

gy = lim =
) LxyG Fat N
ou_ ov N
= + o) N
dx 6x &Y

Secondly put Ax = 0, Az = iAy, and let Ay»> 0. Then

analogously
\ .9
=i (%)
ay av,

Thérefore ..':'6u+ .9r oy Bu

E $ Ju—— 1,__ =
;’> dx  dx 8y 6y
from whlckgthe Cauchy-Riemann equations follow.
COH’K&Scly, assume these equations to be valid. We easily

Zkﬂ %)

g‘“—.t\’;aCCOrdmg to the rules of the calculus, ——==
\’zuw+Aay+Am+wa+Any+Aﬂmme~wa)
Ax +iAy

~Ax+ A + 4 ”Ax+@&ﬂ
ax ax 8y +o

AxFiAy
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wherelim ¢ = 0,as Axand AyapproachOoras Az = Ax +iAy
approaches 0 in any way. (The reader should prove this
formula!) It follows on account of the Cauchy-Riemann
equations that

Mngtinn+iZ(ar+iny .
AfE) _ Bx . dx + <)
Az Ax-i—iAy A ;'\
=a_u+i§£+a_ ' .:f “
. ax ax ’m’\\
Also %)=17(§3+£@)+0. O
Az 1 \dy dy K7, \d

Consequently éi-—@) has a limit as~23\z+ 0 in any way, and
] O

fz) 1s therefore an analytic fun,titioh. This limit is, of course,
du +1.67;.'"'_ v .du

o R 5; - 6‘_y - 5}
All logarithmic petentials are obtained (in conjugate pairs)
by taking the redl and imaginary parts of all analytic functions

of z. This is/a very simple method of forming logarithmic
potentials, (For example

j%"- . 1 x .y
=x" , r= 2 42 + - = —_— ]
z’ ¥ e ) +i(2x) z x4yt 1:vc’ + 3
.,}f\ & = ¢ cos y -+ i¢® sin .

~CAlso, aiter introducing polar coordinates
) 3

x=rcosb, y=rsintd r =‘\/x=+y'n’, § = arctan%,
an important example is
logz=logr+id0
so that arc tan (y/x)"is the function conjugate to fog W
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Art. 2. Expansion in Cartesian and Polar Coordinates

Since every potential function can be regarded as the real
part of an analytic function, it is not difficult to prove in a
new manner the power series expansion previously derived.
The new proof, however, assumes some knowledge of the theory( ™
of analytic functions and is only applicable to logarithmu:
potential. The function f(z) whose real part is the. gn’fen
potential % can be expanded in the ne1ghbourhood of any
regular point 3, in a power series "\ B

10 = 3 nle = ",

with constant coefficients ¢,, which is J:;r%\%m to converge in
the largest circle {5 — 2of < & which\ean be drawn in T about
z. To separate this into real and(inaginary parts, we set

z2 =X -+ 4y, Zp= xn;k"iyo. Cn= @nt iba,
‘and heace

iz — 2o)* = {an+ 1bn)(x“— xu-i- iy — 3))"

= (& +&§).{\(x — )" *(2 )(x ~x0)" Hy —yo)*+

+ 't.l:(n) (x_%) #=3(y — 50} _(”)(x —x0)* (¥ —¥0)® +- ]} i

therefore, ”f\ we denote the real part of a complex number g

byé’&l\

' "'ﬁ{' e = ”ao[an{(x —~xg)" —'»(g)(x —x0) "y —yo) 4 = }

N

\ \’-“ n{(l )(x —x0)"1(y —y0) "(;)Fx“”“)ﬂﬁa(_y —yoft }] '

It requires proof that we may remove the brackets in this
expansion and rearrange the terms. It is sufficient to show
that the double series in & — %o, ¥ — Jo arrived at in this
Mmanner is absolutely convergent. Now

27 2
o
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1%]{ |x-—xal"+(g)lx—xol“'zly—ynlﬂ+ ..... }
ol (Vi =+ (et

<lesflesdot (s l—solt o} )

s\

=[cal (ke — ol +1y =30} O

L 3

w ("wﬁ
The series X |eal{jx — xo| + |3 — ¥ol)" converge,sj\for tx — xo| +
=0} ~\

[=2] S 3
|y — 90| <k since the series X |enllz —zgl"‘ couverges for

|2 — 2] < k.  Therefore the clo—uble 'SQ}IES converges abso-
lutely, also, for Ix—-xg] + |y— yui(\k and hence certainly

when jx— xul< —and |y— ygi< §: Thus the convergence

of the resulting Taylor 8 ser;és

u(x, y) _E e (x —x0) (y —yo)’

3 i, jm=Q
is established foi\\1 sufficiently small neighbourhood about
(o, o). > '

We now assume that (xo, o) = (0, 0) for s1mplicity, and
mtroducé\polar coordinates x = R cos ¢, ¥y = R sin ¢, giving

{z} 2 cnRe M
"\ "‘
a\Y

) =3 R, — by si
@ Eo {en cos np — by, sin ne)

(Gn-l- ib,)R™(cos ng + 1 sin )

H=

= 2 R*(b, cos #p *+ @, sin #g).
e

The expansions of # and v, like that of f(z), are valid in the
largest circle about the origin which lies in the region of
regularity T
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We may note that if « and its derivatives with respect to
x and y to the m* order vanish at the origin, the coefficients
¢; of the Taylor series vanish for ¢ 4+ j = m, and accordingly
the coeflicients a, and &, vanish for # =< m,

Art. 3. Comnverse of the Ideas in Art. 1 K \\

In Art. 1 we obtained the function o conjugate to & ‘givén
harmonic function, and showed that these functlon& satlsfy
the Cauchy-Riemann equations. We will now reverse the
procedure and prove that: If fwo funcitons u qu&b are contin-
uous, with continuous first partial derivatives, indbounded simply-
connecied region T and saisfy the Cauchy-Kiemann equations
there, then they are regular potentiol funcifers'in T, This theorem
evidently permits the use of the concept of regular petential
functions without making use of second derivatives (compare
Chapter I1, Art. 7). :

For the proof we form thé‘i’ntegral

M\T {udx — vdy)

N :
over any closed/eurve €’ free of double points, with contm-
uously turnipg’fangent and lying entirely within T. If we
call T the region bounded by ¢, then (see Chapter I, Art. 1)

OV : ' (aw au)
AN\ udx — =~ — +— ) dS.
A Jae =[G

~Erdm one of the Cauchy-Riemann equations, the integrand of
Nthe area integral vanishes identically, so that

k. .'.

(10) f (uds — ody) = 0

- C'
Since the integral over every closed curve vanishes, it follows
that '
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P
(11) -[P. (udx — vdy)

is independent of the path of integration as long as this lies
in T, and hence depends on the end-points only. With Py~ -
fixed and P variable, this defines a single-valued fuaction ot
(%, ¥) throughout T. This function, which we demgna'te by

F(x, %), has the properties that (see Art. 1) . QO
a2) O w Een, o0
9% 9y - N\

and hence
| PF_ou #F_ _ o)

ax?  ox' ay? Loy
so that on account of the other Qauéhy-Riennann equation,
(13) AR 0.

Therefore the function F(ic y) possesses continuous second
derivatives in T and satisfies Laplace’s equation there. Thus
F(a, ) is a regular pofential function in 7. Accordingly its
derivatives, and hghce the functions # and v, are likewise
regular hannomc}tmcnons in T, '

Note. The condition of continuous first derivatives can be
replaced by a”milder one: If % and v are continuous in T and
pOSSESSQh}re first partial derivatives satisfying the Cauchy-
Riemann equations, and if they also have the property of

oamplete differentiability,” then % and v are regular potential
. Aunctions in T. The hypothesis of complete dlfferentlablilty
\§) ) For the function w is that we can write

Aw = w(x + Ax,y + Ay)— w(x, y) =g—t-qu +%UA3’+"
X

where ¢ is an infinitesimal of higher order than Ax and Ay in
the sense that

€
—— ~*0 as Ax—> 0, Ay >0
[Ax| + Ay y
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This condition is certainly fulfilled if the partial derivatives
are continuous, but it may be fulfilled when the derivatives
are not continuous.

With respect to the proof, we merely note briefly that the
hypotheses on # and v assure the existence of a finite derivative
f(2) of the function f{z) =« + év1 Then, by applicatiop\of
a famous theorem of Goursat?, it follows that fis an a,né,i\)ft\lc
function. From this our theorem follows immediately?

2N
S

Art, 4. Invariance of Potential under Conqu’iai ‘Mapping

If X +4¥Y = f(z) = f(x + 4y) is an analytic function of z,
which is regular in the neighbourhood Qf\}'pomt zo and hasa
non-vanishing derivative there, i.e. f’ (z}) # 0, then it is known
(Chapter VIII, Art. 12} from the tHedry of functions that the

. neighbourhood of 2 is mapped »by ‘this function conformally
(ie., with preservation of ang}es) in a one-to-one manner on
the neighbourhood of Z,= f{zn) The inverse function 5= F(Z)
is analytic, regular in theneighbourhood of Zs. If we wish to
remain in the field of-feal variables, we can state these results
as follows: If th antlons X (x, ¥) and Y{x, y) have contin-
uous first partnal dérivatives in the neighbourhood of a point
(xo, 7o) which(@atisfy the Cauchy-Riemann equations

SO ax oy ax _ _ar

(14) ~ & —_ »
OY sy sy ax’
angi.,"rf%eir Jacobian
& _ ox 9
NA15) =" i
oy oy
ax Oy

in this region, then the equations

1See, for example, Osgood, Funktionentheorie, 3.Aufl., 8.Kap. §6.
*See, for example, B, K. Knopp, Functionentheorie I, §19, theorem 3.
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(16) X =Xz, V="Yxy

map the region about {xo, ) in a one-to-one, reversible, and
conformal manner on the region about the point Xy = X (xq, 2},
Vs = ¥Y(xo, y5) of the (X, ¥)-plane. The functions (16) and\
the inverse functions possess continuous derivatives of all
orders in the neighbourhood of (xo, yo) and (Xo, ¥3) pespet-
tively. By combining (14) and (15), we find besides that

p- (Z)+(Z) &
ox dx .‘...\‘

Now let « be a regular potential in tite neighbourhood of
{xo, ¥o). By the equations inverse to’{16), « is defined asa
function of X, ¥ which has continupujsﬁ\derivatiwm of all orders
in the neighbourhood of (X, Yo)i) We will show that #, re-
garded as a function of X, ¥'is also a potential, since it
satisfies Laplace’s equations Now

du_ou 39X  u'dY ou _ ou 80X du 3Y

ox  9X ax im:'aY ox' 3y oX ay dY dy

u g faX\ du oX 9V | ou (VY

_—g = —Al — 2 = + -

8zt aX2Nox 9XaY ax 3x 9V \ox
4 HOPX Y B o (ax)f

AX ax*  aY an' 3y oX*

9y
From'this it follows, after making use of (14), that

......

) '\'j N TN {(GX)* (6 Y)*} ( Pu |, Fu
mnl) — + —_— = Puining — il e =
-\ Y7 9xt 0 gyt ox + 9x axe? + a Y”)

u 32“)
D (5)?2 M

. ¥
Since D50, it follows from Fu +."fi‘ = O that Bu =+ I .
dx? - 3y?

y ax: aY*
The theorem which we have just proved can be stated: A
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regular potential function is invariant under a conformal
transformation.

The theorem of this Art is very simple, when expressed in
terms of analytic functions of complex variables, Let
u 4 iv = g{z) = glx + i¥) be analytic regular at zo= x5+ ol
so that u(x, ¥) is harmonic regular at {(xo, ¥o); and suppase
Z = X 4 1Y = f(z) and its inverse 2 = F{Z) are apalytic
regular at g5 and Zy = f(30) respectively. ~ (This impliés’that
f'lz0) = 1/F'(Zo) #0.) Hence g(z) = g{F(Z))=U %} iV is
analytic regular at Zy and therefore U(X IQ. harmonic
regular at (X,, ¥,); moreover, obviously, u(x\‘ge} Ux, v).

Vo \l
,’O .
R
S 3
’



CHAPTER VII ~
THE BOUNDARY VAL.UE PROBLEMS OF POTENTIAL TH.E({RY
{

. 4 0\ w
Art. 1. Statement of the Problems W W

We have already stated that it is not pmsibleftd“prescribe
arbitrarily both the value of the potential and of its normal
derivative on the entire boundary of the region of regularity.
We will soon see that a potential func.t'(sn’ is uniquely deter-
mined if either the value of the function or the value of its
normal derivative is given on thelcomplete boundary of a
region. We must first formulate yore exactly the problems

-which arise in this manner, 3"

Let R be a finite regionm space, bounded by S. We will
assume-that Sis a closgd‘sﬁ'rface with a continuously turning
normal, in general; wever, it may have a finite number of
corners and conical oints. Since multiply-connected regions
are to be aIlowegi,\S‘may consist of a finite number of separate
non-intersectingsurfaces. Let f be a function defined and
continuous ‘at/all points of . Then the first boundary value
problem fiay be stated as follows: fo determine o solution u of
LﬂP{ﬂ{ﬁfs equation Vi = O which is regular in R and coniinious
in R3S, and takes on the prescribed values f on S. The last

,cendition means that on approaching .S from the interior, #

Nt o

eonverges to f. This first boundary value problem is also
called the ''Dirichlet problem."
The second boundary value problem of potential theory, or
eumann problem”, is: to find g solution % of Laplace’s equa-
on which is regular in R and whick, along with its normal

i

72

derivative, is continuous in R + 8, and whese normal derivative

approaches the given fumction fon 5. Since we know that
180
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'!'J' ?JS = 0 for any closed surface inside which # is harmonic,
n : . .
it follows that the function f here is not completely arbitrary,

but.must satisfy the condition

U 45 = 0.

In the theory of logarithmic potential, the first and, sé(?c'i{}d
boundary value problems are stated in exactly similat“form.
The boundary € is a closed curve consisting of a ﬁxfité"number
of pieces with continuously turning tangent; orlC"may consist
of a finite number of separate non-interseeting curves of the
above kind. AN

Bouadary value problems arise in@heoretical physics; in
general, the first boundary value problem arises in electro-
statics and in heat conductiony while the second boundary
value problem is met in hydrogyﬁamics. For example, in the
theory of heat conduction it:is'proved that the temperature %
of a body, if it is indepen(iént of the time (i.e., for the so-called
stationary state), satishes Laplace’s equation and hence isa
potential in our ééef'al sense. Here the temperature of the
surface of the B %r may. be arbitrarily given as a function of
the position {jﬁ “the surface. '

Also, 'ﬁ:the stationary flow of an incompressible fluid, a
“velocity‘potential”’ may exist (see end of Art. 5 in Chapter
III)\:%This is a function whose vector gradient is the _ﬂuid
‘.’fa‘i'OCity. This function also satisfies Laplace’s equation. The

~(ate of flow outward through an element of surface is propor-

N

J . . . .
N\ tional to ? and may be arbitrarily prescrlbed._ But it is
" 3u e

necessary that the function f = on satisfies the condition

J. jgjds = ). Physically, this is the condition for incom-
n .

pressibility (Chapter 111, equation (12))-
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When the stationary flow of heat in a body is investigated,
assuming that the flow through the surfacc is governed by
Newton's law of cooling, the value of the quantity

du
kan + hu ~
is given on the surface.  Accordingly, we formulate the'third
houndary value problem. \

We s:eek a potential which satisfies the surface condition
k g-i—‘ + ku = f where k, b and f are arbitrary{peéscribed func-
% AN

tions on S (continuous functions). In thiabove case kand &,
the conductivity in the interior and tHat“through the sucface,
are positive. The case where & and¥pare of opposite signs is
of interest in hydrodynamics. The first and sccond bound-
ary value problems are special cases of the third fork =0
orh =0. We will not bevas much interested in the third
boundary value problem as in the first and second.

We will consider affiqueness theorems in this chapter. In
Chapter VIII we will'prove the existence of the solution of the
first boundary Waliie problem for the circle by mecans of the
Poisson integfal, and in Chapter IX we will consider the cor-
respondingiproblems in space. In the last two chapters we
will develop the Fredholm theory of integral equations and
applythem to the boundary value problems of potential
théary.

' ,\~f .* Dirichlet was the first to attempt a general existence proof.
¢\ His method, called the “Dirichlet principle” by Riemann, was
" later proved by Weierstrass to be inexact. Later, C. Neumann,

H. Poincaré, H. A. Schware, E. R. Neumann, Fubini, Lebesgue,
Zaremba have given strict proofs. Further, the boundary
value problems have been solved in a very elegant manner by

J. Fredholm by means of integral equations. Hadamard’s
determinant theorem plays an important role in Fredhoim’s
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theory. Moareover D. Hilhert and R. Courant have refos-
mulated the Dirichlet principle in a form free from objection,
and O. Perron has proved the existence theorem in an entirely
new marnner.

Art. 2. Unigueness Theorems
e N\

The first houndary value problem has at most one solutmn

For let u; and 1, be two solutions; then it is to, be proved
that v = %, —uy vanishes identically in R + S. Ewdently v
is a potential function regular in R and contmubus in R4 5,
which vanishes at all points of 5. Assumethdt v is different
from zero at some point in R, hence eithpf\bdsitive or negative
there. Then » must have a maximunyerminimum in R, which
is impossible from Chapter III, Art.)8. Hence there can be

. no point in R where v is different fremn zero, so that we conclude

that 4= #,. This proof is yalid for Newtonian potential as
well as for logarithmic.  ~3% '

The second boundaryuiiue problem has at mosi one solution,
except for an additive ¢on'siant.

Let #y and #sbe'two solutions; then we have to prove that
v = 1, —u; remaids constant in R. It is evident that v is also

) : v . .
a regular p@{ceﬁtial in R, and that v and %— remain continuous
' 1

on app%achmg the boundary S, and that 5; =0on S We

_.cdn therefore say that v is a solution of the second boundary
\ Yalue problem for the special case f = 0. But from the first
form of Green's formula, now assuming Newtonian potential
(the case of logarithmic potential is handled similarly), we have’

([fusorar - [
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.. 0
and hence, on account of the boundary condition a—v =0,
"

Gy () «E@) e -o

Noting that the integrand here is necessarily non-negative
and is continuous, it follows that it must be zero ever;\q.v\h"ere
. o D
in R, so that we must have o v _dv_ 0, fremiwhich it

dx dy 0z I
follows that v is a constant. o

The third boundary value problem }g({.g;at most one solu-
tion, {f% > 0. \

If we let o =% — u; again,,thén“a—v + k v = Qon S. Then
from Green's formula again,.} n  k

e o=
% N F on sk

ne
Here we note th,a% > 0 everywhere. Since a positive quan-

tity cannog. feqﬁal a negative one, it follows that both the

surface apd“the space integrands must vanish identically in

thei{'\'(lt\egration regions. Hencegrad v = 0, so that » =const.

in {R’\‘md v = 0 on S; hence by continuity v = Qin R + 5,50
oAhat 1= u; in R + §.

N/ It should be noted that Green's formula, on which the
proof for uniqueness of the second and third boundary value
problems depends, cannot be used on the first boundary value

av
problem. For the proof of Green's formula requires that Pl
as well as  approach limits when the boundary is approached;
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but in the first boundary value problem only the continuity

: d
of v and not that of 62 was assumed.
7 . .

Art, 3. The Exterior Problems

The above boundary value problems are known as intdridr
problems, in contrast with the “exterior’” problems to, which
we now turn.  In the interior problems, a functlon was sought
which was harmonic in the interior of S, which/we will now
designate by 1, and which satishied certain Im}ar boundary
conditions when the field-point approached §trom the interior.

2. '
. ssz\

Q‘@

close,d surfaces (m-3)

v

\ > FiGc. ¢
In the ez\tel tor boundary value problems, the corresponding
pmbl%ﬂ@ are treated for the region V,, exterior to .5, whlch.
contding the infinitely distant points of the plane or space.

' “(C shall often follow the usage commen in theéory of functions,

N\

gmd speak of the region outside a very large circle as the
nexghbourhood of “the point at infinity” or the ’ e
point,” and say that a point which is becoming infinitely
distant from the origin is approaching the point at mﬁmty
This is nataral because of the frequent use of inversion, in
which the regions around the origin and around the “point at
infinity”” are interchanged.
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The desired harmonic function is required to be reguiar
in the exterior region including the point at infinity. We
assume that the boundary may consist of several closed sur-
faces instead of only one, designated by S\, 5o, . . . .. S, We,
designate the entire set of boundary surfaces bv 5. And thé
region V, designates the region which is composcd of all péints
lying outside all the S;, or in other words, outside of 8N

We will formulate the exterior Dirichlet problefn Jor the
region V, outside S as follows: 0 find a harmonicfunction of
the form 4 = 1 + c, where w is regular in V, an@.Continuous in
V.+ S and c is a constant, such that we havede™= f on Sand w
has the mass M, where f and M are prescrsbed. The uniqueness
of the solution is proved as follows® “et u,= w:+ ¢; and
#: = W+ ¢y be two solutions, and letdv= u, — 2wy = wi—we +C
(C = e1—¢1). Then v takes the valite 0 on S. The harmonic
function w, — w, is regular injiV',’and continuous in V,+ 5,
takes the constant value —C0h S and has the mass 0 (because
w: and w, have the samemass). Now,since a regular harmonic
function with mass Q €an have no maximum or minimum at
infinity and no maximdam or minimum anywherein IV, {Chapter
IV, Art. 8), it follows that the identity w; — w; = — C must hold
in V,+ 5. Sinee also w,= 0, w.= 0 at infinity, it follows
that € = ( p?' €1= ¢y and w, = w, everywhere in V,+ S.

Th‘;upr}'blem can also be stated in the following form:
to ﬁné;a'hafmonic Junction w whick is regular in V, and con-
tintous in V,+ S and takes on the value for S. The uniqueness

" ¢of the solution of the problem thus formulated ,and its existence,

<. ) will be proved in Chapter XI, Art. 3.
In the exterior Neumann (or second boundary value}
problem, a harmonic function % is sought which is regular in
V.and continuous with continuous normal derivative in V, 45,

and ‘satisfies the conditiona_“ =fon S. In the third boun-
on .

dary value problem, the corresponding condition is
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In both these problems, the uniqueness is proved just as in the
corresponding interior problems, since the Green’s formula,
used there is valid for V..

We emphasize the following remark in the ingérior
problem the use of several separate surfaces as the boundary
is no generalization, as the interiors are several unconnected ’
regions; hence here it is sufficient to consider a single béundary

surface .S, ¢
The three correspondmg problems for 10gar1tf1m1c potential
may be treated in a similar manner. N\

,.
W

Art. 4. The Dirichlet Principle. Direct Methods of Calculus
of Variations A

We will now investigate? furrther the Dirichlet principle

mentioned in Art. 1. Thge:'ﬁi'st boundary value problem is

very closely connected with the Dirichlet variational problem:

to make the “Dirichletuntegral”

o oo () () ()] -
]

\ﬁﬁ\ J (Vw)dV
\‘ .

a mifitmum. More precisely, what function, among all the

functlons w which have continuous second derivativesin V+35

~ a.nd take on the prescribed continuous values f on S, gives the

smallest value for the integral D? The same hypotheses as
before are assumed on the nature of V and S. '

Assume that the problem has a solution x. Then for all

“admissible” functions w, i.e. for all functions % (different from

) which satisfy the above continuity and boundary conditions,

we must have D(w)> D(x). If v also satisfies the continuity

conditions and vanishes on S, then w = % + v, where A is an
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" arbitrary constant parameter, is an admissible function. We
therefore form D(# + M}, and, using the abbreviation

dudy | dudy | dudv
2) Du,p) = —_——t ==+ — ildV
@ Diw.v) J-ﬂ[ax ax+ayay dz oz ~

(fores

7'\
for convenience, find that hy

3 D + W)= D{u)+ 22D (u, v) + )\”-D(J)
Evidently D{u, u) = D(u). The expression QLD’(u v) is known

in the calculus of variations as the “first ¥driation” of D(x).

Now it may be seen to be necessary that}for every function.»
of the form described, ™

4) D{u, %) <0,

Since if D(u, )5 0, we could-ghoose the absclute value of X
so small that the value of 28P(x, v)+ A*D(v) would have the
same sign as its first termyand then choose the sign of \ so that
AD(u,9) < 0. Then wéWwould have D(u + ) < D(u), so that
# is not a solution ©f the Dirichlet problem, which is a con-
tradiction. X\

From (4),]:33}'the use of the first Green’s formula (Chapter
I, equatioh (25)), we get

\\ Dy, v) = — Lquzud v+ ”v =4S,

and because v = 0 on S,

O
\ 3 (5) ' J:H sV iudV = (.
4
From this, we conclude that
(6) o V=20

throughout V. For if 2 were not zero, but say positive at -
some point in ¥, then on account of its continuity it would be
positive in some neighbourhood, for example in a small spherc.
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about this point. Then it would be possible so to define a
function v that it would be positive inside this sphere and zero -
cutside it while retaining the required continuity properties
even at the surface of this small sphere; for this function o,

we would have '
J ”wvmdv >0, KO\
K -

which is a contradiction to (5). We see therefore ‘that any
solution of the Dirichlet variational problem is also a solution
of the first boundary value problem. R '\\

Moreover, it is sufficient to assume thatu g, and w merely
have continuous derivatives to the second drder in ¥ and are
continuous in V + S, while nothing i§ assumed about the
derivatives on approaching S excepf that they are uniforrily
bounded. Fori S isa ne;ghbourmg surface lymg just inside
S, we may apply the Green's theOrem to the region ¥’ inside
S, giving

”JWWWMV“* —J”»vzudv+ﬂv_-ds

Here the surface }q\tegral may be made arbltrarlly small by
letting ' apprdagh S, since v has a value uniformly close to

Oon § andg i uniformiy bounded there. Moreover, the integ-

ral J"[ﬁ(?u «Vod V differs arbitrarily httle from “- Vi VodV

ami also on account of (4) is arbitrarily near 0. Hence
_ﬂ vVudV is arbitrarily small and also arbitrarily near in
value to J:”wvzud V. Butsince this last integral has a value

mdependent of the passage to the limit, we conclude again
that (5), and therefore (6), must hold.
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Now assume, conversely, that « is a sclution of the first
boundary value problem. Then for every function v having
the required continuity properties and vanishing on S, we’
have by the Green's formula that D{%, v) =0. Hence D(u+2v) =
D(u)+D(v). But it is evident that D(v)> 0, and is only =
when v is a constant and therefore zero throughout Vs
since ¢ is continuous and vanishes on S. Hence D(% R4 U)>
D(z) unless » = 0." We see therefore that a solutionof the

first boundary value problem is also a solution of, the Dirichlet
variational problem. S

The Dirichlet variational problem and the ﬁrst ‘boundary value
problem are therefore equivalent problems

They have the same solution, in cas\e such a solution exists.

(It has been proved, Art. 2, that ot ‘more than bne solution
exists.)

The integrals D(w) formed for admissible functions = are

a set of numbers which has a lower bound, since D{w}> (.
From this fact Riemani» concluded that a function # must
exist, which makes the'integral a minimum. This method of
reasoning is call&l\the "“Dirichlet principle.’ However, the
conclusion is ngtvalid. Its falsity consists in a failure to dis-
tinguish between “lower bound"” and “minimum,’ an error
which led)to’some false results in early mathematical history.
An infinjte set of numbers which has a lower bound certainly
hasa\lower limit m, which has the properties that all numbers
Ofthe set {except a finite number of them) are > m, but that
e \there are always numbers of the set < m + ¢ when ¢ is any
" positive constant, no matter how small. Thus the set of num-

1 1 1 .
bers —, 3, has the lower limit 0. On the other
hand, such a number set may have no minimum: in this
example the number 0 does not belong to the set. The num-

bers D(w) llkew1se certainly have a lower limit; but from this



ART. 4  DirECT METHODS OF CALCULUS OF VARIATIONS 191

it does not follow that a function u exists, for which D(u) is
equal to this lower limit, or which makes D a minimum. '
Weierstrass discovered the error in Riemann's method of .
reasoning, and gave an example also where no solution existed.
However, Hilbert! later brought the Dirichlet principle baek,
inte good repute, by showing that under certain limiting cohgi-
tions on the boundary and the prescribed boundary values the
calculus of variations problem actually does have aj'.sb'lution.
{This accordingly is also a solution of the first bou{’tda:ry value

o

problem.) w

If the boundary value problem is solved\in any manner,
as for example by the use of integral ‘equations, then the
variational problem is thereby solvqc(a so. Or, the latter
problem can be solved directly, as Hilbert did, thereby solving
the boundary value problem aolso'r’ We will consider a few
remarks about the direct methads of the calculus of variations.
The variationaj problem may be reduced to differential equa-
tions (Euler’s equations), and then an attempt may be made
to solve or integrate these differential equations. This is the
well known meth ({‘uéed in the early calculus of variations. .
More recently, ho%vever, the “direct methods” have come to
the fore, in which an attempt is made to solve the problem
without rediiding it to a problem in differential equations.
Moreover{?boundary value problems in partial differential
equatj&és‘may be transformed into. variational problems;'so
th%t"?h} corresponding Kuler equationsare the given differential
¢quations, and then the newer direct methods are applied:

N\ We will briefly sketch the direct method here in connection
with the Dirichlet probfem. Since the numbers D{(w) have a
lower limit m, there certainly exist sequences of admissib!e
functions 1y, w,, . . .. such that Dw.)»masny» . This
is known from the elementary theory of real functions. S_UCh,
2 sequence of fuactions is known as a “minimal sequence.’

Yournal . Mathematik, Bd. 129, 1905, and Math. Annalen, Bd. 59,
903,
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But it is not certain, even if a solution # of the calculus of
variations problem exists, that w, » #. Therefore it is neces-
sary to select from the sequence w, a sub-sequence gy, so that
we actually have g, » %. To obtain such a sequence, we may
proceed as follows. Let the region V be covered, or filled outy,
by a denumerable infinity of spheres Cii =1,2,3,...)..The
pumber of the spheres containing any given point inside )V is
finite, but increases without bound as S is approache?:l. For
the sphere C the first boundary value problem is golyved, using
the values of w, on its boundary. (This may be'dene by means
of the Poisson integral described in Chapten 1X.) Now let
g. be that function which is the solution of\the above boundary
value problem in C; and is identical W‘lfh ‘w, in the remainder
of V. The function g, is therefo;'e:lhrmonic inside Ci. The
functions g, then form again ‘a minimal sequence. For
D(g.) = D(w,) when the Diridhlét integral is taken over Cy,
and D{g,) = D(w,) when thigintegral is taken over the remain-
der of V. Hence D(g.)=D(w,) when the integral is taken
overaliof V. Now sinee D(w,) > m, it follows that D (g} >
(for certainly it cdxinot happen that D{ga) < m). Moreover,
it can be easily proved that the minimal sequence g, converges
inside € to @ harmonic function. Qutside €, the sequence
g may npteénverge to a limiting function. Thissame method
may behapplied to the other spheres Cs, Car ... ., leading
to'ﬁqli‘t‘mg functions which are harmonic in them. Further-
dere it may be easily proved that all these harmonic f unctions

.\"~répresent the same function, since they are analytic contint-
\ ations of each other {see Chapter IX). We obtain in this

manner a harmonic function defined throughout V. Finally
it may be proved that this function, like the functions @x and-
ga from which it was derived, takes on the prescribed value

f on thé boundary S of the region V. This concludes the
existence proof. _ .



CHAPTER VIII
' THE POISSON INTEGRAL IN THE PLANE

Art. 1. Solution of the Dirichlet Problem for the Circle .
: A

We will now solve the first boundary value problem fortite -
interior of a circle. The solution of this problem i’&,gi\\'ren
explicitly by an integral over the boundary of the ci}'(;lé, which
was found by Poisson. AN

Let C be a circle about the origin O of rafijus?, and let 2.
continuous function f be given on its boundaty S (Cis the
interior of the circle)., The solution of this nterior problem is

O uley) = - % jg f{cos(:ﬂ) f ‘;';} s,
L

where  is the vector distancéfo the field-point P:(x, ¥) from
the integration point Q:(&'%) ‘on the circumference .5 of the
circle, and 7 is the opitw\trd normal, and hence in the same
direction as 0Q. X\ '

To prove this,(write # in the form

09 iy = - L ey L[ La

; 2
NS, 3 §
The 1r1jcé‘g>al
AN - =§fcos (r, n) ds

QO 3T |
is the potential of a double distribution on S, and hence a
regular potential function in the interior ¢. The second in-
tegral on the right side of (1*)-is a constant, and hence cer-
tainly a regular harmonic function. Accordingly the function
#is a regular harmonic function in the interior region C. Since
193
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f is the moment of the double distribution, the potential W
on approaching the boundary point A satisfies the condition

W= W,— af4 _
(see Equation 45 of Art. 8, Chapter 5), where A\
W, = J;Jizos_(_@) ds Oy
L4 NS ©
s \
is the value of W when P is at the boundary point A‘ But for
P at 4 on the circle S, ¢
cos (r,m) = — cos (OQP) = 1, M =.__1_
2 O 2
[ f &
so that W= — e L gEe
I?I:‘f” "

and accordingly, the limitiug"{félue of % when P approaches
the boundary circle at 4 ié»C )

e L[t
. {

which conclude\the proof that (1) solves the boundary value
problem:. ,“~:~'

Th{ luteéra_l can be put in a form better suited for appli-
cations’” For this purpose, introduce polar coordinates with
the@éntre of the circle as pole. Let R and ¢ be the polar

ebordinates of P, and £ and  be those of Q. Then
AN
9 R?= P4 24 2Ir cos (r, n),
=71+ R'— 2IR cos (¢ — ¥),

ds = ldy,
so that the integral (1) is easily seen to become
@ wel j{ JLEer R U G o' 2
271-J 24 R2— 2IR cos(p — ¥)
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(The quantity #— R? may, of course, be brought out in
front of the integral sign.) The dnlegrul in this form was
obtained by Poissoh, and il is known as the Potsson integral. [t
is of fundaniental importance in potential theory; and will be
of great value in the further developments.

The exterior bop}d\uy value problem for the circle is easily
solved. The solytién is

<
®) Bey) = L1 {C"s rm 1 }dS
’\ T g 4 21
or ’::;\\
o) 1 [LR2—P
) Ly) = — ay.
\$ u(x, y) %Ef e

Formally, this differs only in sign from the solution for the
interior of the circle. 'The proof is entirely similar to that for
the interior. We emphasize that # is regular also at the infinite
point,
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Art. 2. Expansion in the Circle

We will now obtaln the expansion of the solution of the
problem for the interior of the circle, given by the Poisson
integral, in the form of a series: ~

¢ 2 . A o
u(R, ¢} = £l + Z (an cos np + b, sin nd}R", .
am=m ] e\

\ W

where the g, and b, are constants. £ N

We will assume for simplicity that the cirgle is the unit
circlee. This can always be done through .éi‘;}ransformatinn

which is a mere change in scale: x;= %,\\y‘l = —:;— . Since har-
. . . . LY .
monic functions are evidently mva.fl;nt under this transfor-

mation, this assumption is no reg.ti'icfion in generality. From
equation (2) of the preceding paragraph, we have then

1 -—R i,
1+ R*— 2R cos(p — )

1 2 N ’,".. o
6)  u(R, ¢) =— I fok
27 Jo~
Let )
= K‘d—-@y = Re¥ = R{cos ¢ + i sin ¢);
then it is ea’si,fzy’.Seen that w« is the real part of

Y _ 2x i
® 27 Fo=g J 50y 52 ay.
\w: rlo e — 2
Fof ™\

M\:"\;,’e;“ +2 _cosy + Rcos ¢ 4 i(sin ¢ + R sin ¢) _4 +1B
\3" ¢ —2 cosy — Rcoso +i(sing — Rsing) C+1D
But : :
3{({!_+f_5) 23{((A 1 iB)(C —iD)) _4c+BD
C‘+“3D C2+ I Cg_|__ fal
and hence
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wi 4z
%(Z,,,- - z) - _ _
(qos;b-i—Rctrsrp) (cosy — Reose) + {siny+Rsing)(sing — Rsing)

{cos ¢ — R cos ¢)? -+ (sin ¥ —R sin ¢)? I\
= 1 — K . '\‘\’
| + Rt — 2R cos(p — ) A\
From this, it follows immediately that ¢ f:;"
o w(R 9) = BE@). O
For the moment, let » \V
e =q; \
then ’ "1\\'

&
2x

1 1K
Fo= 5 |, 1) 1 2.
Now the expansion )

et gt =2
1—-¢ £ =0

V‘,
3

is a geometric progr&éﬁg}on which converges for any complex ¢
such that |g} <4 ; this series converges absolutely for lq] < 1
and ““iforml}%.fri.‘the interior of any closed region lying inside
the circle [gh&/1. Hence it follows also that for g < 1,

PRrin : Lo+ @t +2 §

@) - - 1 1 2 e = 1 gﬂ!

=g ¢ gl ravre ) "
'a,ti‘gi‘ohence that for |2} = R < 1,

* o« ;
) o = L[ {2 2 et b
2x do #=1
Since the series in the integrand, for every 2 such th'at
l2] < 1, converges uniformly in ¥, we can integrate the sgnes
termwise, which gives

®  Fe = r'fdw +13 zﬂﬁfr’“’"dab-
wJo

T og=1

y
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This may also be written (on account of the identity 2 = Re%)

2» . @ tr .
(8% F(z) = }—'[ fay + 1 b3 R"J‘ fer gy,
2r o T sl 0
By taking the real part of this, we find N\
I ] = 2r K a
u =R (Fz)) = l“_[ fadg +— Z R"J freos nle ‘T\@)d\%
277 1] T el Q K
and by Iusing the ideatity N

cos nip — )= cos ne cos ny + sing:j&%i'n ‘n,
we get the desired expansion (see also Chigte EVI, Art. 2)

g - ,‘:\ g .
(9) u(R’ ‘i’) = E + 21 Rn(a’ﬂ Cos\mf’ + bn 5iN ?Edl),

where the constants a, and b, J)ai'é the values

2r v:’."
“"“‘I‘J @) codmydy  (m =0,1,2,....),
T Jo - N

2x A
b = }:\ij}&) sinngpdy (n=1,2,3,....)

These constants are known as the Fourier coefficients of the
function f(§):

~ The'above expansion is valid for R < 1, or for the entire

intq@r ‘of the unit circle. Since the series, obtained by term-

\1\.@5@ differentiation with respect to R or ¢ arbitrarily many

__(“times, likewise converge uniformly in any closed region lying

~)“in the interior of the unit circle (from the theory of power

series), it 1s known that such series represent the derivatives
of u.

(10)

From the preceding results, we get the following theoren,
which is the analogue of Cauchy’s theorem concerning the
expansion in a power series of an analytic function in its region
of regularity: Ifuisa polentinl function regular in anyr egion T
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and if O is any point of 7' (which may be taken as the origin
" without loss of generality), then u can be expanded in the form
(9). The series converges in the interior of the largest circle aboul
0 which contains only points of T in ils inlerior; it converges
uniformly in any closed region lying in the interior of this max-
imum circle. It can be differentiated term-wise arbitrarily oftén
in this circle. NN

To prove this, it is only necessary to let P be a pojgt tiside
this maximum circle, and to take a concentric cirele.slightty
smaller which still contains P, and apply the Poi$soh integral
to this circle, which leads to the required develepment.

We note also the following fact: the expamsion of u in the
Jorm (9) is unique, or possible in only oné way. For if there
were a second such expansion, \4

o

%= ._2? + 3R%{a', co§:?£<i;'+ b, sin na),

then it would follow that t“hérééries
i £
2
in some region ahiopt O identically in R and ¢. Then, for an
arbitrary but fixéd value of ¢, this is a power series in R which

vanipshes i@s@}i”caliy for some interval about 0. Hence the co-
eﬂimen’g‘{{fﬁach power of R must vanish, so that

+ 2 R" (gnEB") cos ng +(ba— b'a) sin ng) = 0
b\ |

N\ @~ aly=0
M(Eh{.\—’a’,,) cos np (b — b'a) sinmg =0, (n =1,2,3,...).
\Since these equations hold identically in ¢, we get the desired
conclusion that g, = @', ba = B,
Art. 3. Expansion on the Circumference of the Circle

dit maY_happen that the series (9} converges for R = 1
and 2 defnite value of ¢, that is, that the series
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[1-]
(11) %’ + ¥ (@, cos n¢ + b, sin ne)
L
with the coefficients (10) converges for a definite value of ¢
The series (11) is known as a Fourier sertes, after the mathe-
matician and physicist Fourier, who first used such seriesén
the theory of heat conduction. In case the Fourier serigscen-
verges, then the expansion (9), on passing to the limitygives an
expansion valid on the boundary circle, >y

AN
*4 R

(12)  lim u(R, ) = f(¢) = 2+ 3 (. cosfid '+ by sin ng).
Ryl 2 = )
To obtain this, use is made of the .tl\r@'orcm. that
(x4 ny
(13) im 3 R*(a,cosng-+b,sinn)s & (@, cos ne+bysinng),
R>1n=t P\
or that the process of passingto'the limit as K-> 1 may be
interchanged with the 2 sigr};.‘ * The justification for this equa-
tion is Abel's theorem in the'theory of infinite series, which we

L]

will assume here, L{}E the series 3 ¢, R" converge in the open
N nm] .
interval —1 <(R'<¢ 1. Then it converges uniformly 1n any
smaller interval —k = R = g, where 0 < % < 1, and repre-
sents a coritinuous function in this interval, say G(R). Now
£EY mo
if thg.\s%'és ¥ ¢n converges, then according to Abel the potnt

He=l

R(= 1 can also be brought into the region of uniform conver

~gence, so that the series Z¢,R™ converges uniformly for
'~k =R =1. Itssum G(R) is therefore also continuous for

R =1 (of course for approach from the left), or G(R) + G.(I)
as R > 1 — 0. But this result is equivalent to the equation
(13).

- If the series (12) converges for every value of ¢(0 =¢ 52“.)’
then (12) is valid for all values of ¢, and f() is developable it
a Fourier series on the entire circumference of the circle. We’
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sec therefore that: at every point of the circumference at

- which the Fourier series with coefficients (10) converges, it
actually converges to the function f(¢) (which, has been as-
sumed continuous). We also note that: if the function f(¢)
is developable in a uniformly convergent Fourier series in tlie
interval 0 = ¢ == 2x, then the coefficients a, and &, are certa.mly
given by the equations (10). This is proved if we multlply
(12} by cas ngorsinng (2 =0,1,2,....)and mtegt:ate term-
wise, remembering the orthogonahty of the tngonometrlc
tunctions (see Chapter 1V, Art. 8). The expansldﬂin a Fourier
series is therefore unique.

Q!

o\

Art. 4. Expansion of Arbitrary Func(;:qns in Fourier Series.
Bessel’s and Schwarz's Inequaliues

We were led to Fourler series) n studymg the boundary
value problem for the circle, | but will now study them inde-
pendently of this derivatiodts .

Let the function f(¢) begntegrable and of integrable square in
the interval 0 ¢ =2\

The Fourier coeﬁie\ents of f are
a0 J fd¢

\¢

a 1\]’“}, de, b
n =< £ COs nQdd, by =
3§ ¢

#

J feinngde, n = 1,2, ...

™

We‘f@;lrm from these the nth “partial sum,”
\ {14) + E (ax cos ke + by sin kg).
We will ﬁrst prove that the sum of the squares of the
Fourier coefficients
2 =)
15) WS (@ b)
4 kel

—_———
Continuity of f is not assumed.
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form a convergent series. By using the orthogonality pro-
perties of the trigonometric functions, we find

[ 0) ~ sa(oas = [ e 2] soas 4 [

2

" sidg

/

0
= [pae - 2™ 1o 3 (ot b))+ 70 4 i
2 k=l 2 b -1 &

N\

2x 2 ” RO
=J’0 de¢ a T[% fkgl {ak2+ bkz):l ’ .'\

. Since the first member of this identity is nbo-tepative, we find

that this gives \\

. a{!! " . , _.:_nlx\ 2x )

(16) Tt X (et ) 2O s,
. 2 k=1 « NS0

which is known as Bessel's ﬁﬂéé’ﬂalﬂy. Moareover, since this
holds for ail values of #, itdis evident further that the sum of

squares of the Fourier ¢oefficients form a convergent series
and that A

~\ 2x
- Yhacd 1
16* FEN 14y = o J de.
(16%) ‘\§\+k§1(ak+ &) - sz
From this ’cb’nvergence it follows that

an o lm @, =0, lim b= 0,
O L e B0 .
coefficients of a function integrable with

S0 t’&" the Fourier

ifttegrable square converge to zero.
PR

Since only the orthogonality properties of the trigonm.netrxc
functions were used in the above proof, we can prove in the
same manner that: If the functions o), (E=1,2,3,.. o
form a normal orthogonal system for the interval @ =x =
and if the function f(x) is integrable with integrable sguare

b
in this interval, then its Fourier coefficients ¢z =J f (x)m(x)#
satisfy the Bessel inequality ¢
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" [
(16**) 2 ol _-gJ fzdx
k=1 a

for every #, and hence also for n = . {The factor i on the
v

right side of (16) and (16*) occurs because the trigonometric £\

functions are orthogonal but not normalized.) From (16%*),it
follows that Slc,? converges and lim ¢x= 0. R\,
koo - N

It can be shown, as part of the general theory of Qrﬁbogbnal
functions, that the equality sign holds instead of tHe shequality
in (16%). This equation then becomes the “Parée}al formula’’,
or the *'completeness condition.” Howeverywe cannct go any
further into the study of “eomplete” orthogonal systems, to
which the trigonometric functions helong. ’

N & 2 b

From (16**) using n=1, we fiad 1:12=[J' fcb;dx] éJ fidx;

‘:. A - a a
the function ¢1(x) is of cou;sé “Hormalized, i.e., it satisfies the
b RN )
condition | éldx = LA gx) is an arbitrary integrable

function with inte\g\f’ék\ale square, then the function é(x) =

AN
T is,noralized. Hence it follows that
J ghdx O\ b s _

~0 U fgdx] .

§ e 2 :sLﬁdx

AN J gdx '

N a
ot

) 4

(16%**) Ui fggx]z = J'Zj?dx-!-:g";dx.

It holds for any two functions

This is the Schwarz inequality. th
on the

fand g which are integrable with integrable square
interval ¢ = x = b. We have here derived itas a special case
of Bessel's inequality; it can casily be derived directly, also.
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Our problem is now to determine conditions which are
sufficient to ensure that a function will be represented by its
Fourier series. This problem is onc of the miost interesting
and important of mathematical physics. There are different
methods of finding such sufficient conditions. We will, con-
sider here a method which is essentially due to Dirichleg, For

this purpose, we will first find a simple expression for the\par
tial sum (14). This sum is

@)= 5 [100 +1 3 foos ks f(wcoggfd@f#
gh’équf(m sin km}
; N
= ijf(¢){1 -+ 2 E Cos k(\b\—"qb) } dy

The interval of mtegration may, be any interval of total length
2w, since we will assume tha.‘t ﬂ¢) has the period 2.
By adding the equatms

2 sm§ cos ka & sm(2k + 1) 5 — sin{2k — 1)
we get the eleme\ntary identity

3 sin(2n + 1)%
(18) \;:,'1+22co‘ska= -

¢ E=1 . a
\~\~ 5in é—
Hégee
1 sin(2n + 1) 'L__; ¢
Sn(‘t‘) = 5= f(“’) d\[".
: 2w sin 14 ; ]

or, if we introduce the new integration varlable V.— % g, this

becomes
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3 .
19 s@=1 [ e+ 2Bt Dy
mdr sin
—%
In the last integral, the integration interval must have the{

length 7, and this has been chosen as the interval ~ ;— == g—\-
R

This formula was obtained by Dirichlet, who derived sufficient
conditions from it (that f be represented by the Fougler series).
The continuity of f is not sufficient. For, it was first proved
by du Bois Reymond in an article in the “Abhandlungen der
Bayrischen Akademie der Wlssenschaften\ Band 12 (1876),
that the Fourier series for a contmu 1§ functlon may not
- converge, On the other hand, contmurty is N0t necessary, as we
shall soon see.  The conditions under which Dirichlet estab-
lished the convergence, or the exmtence of 11_1)11 sa{9)}, require

that f be continuous and monotone in the interval 0 <@ <2x
or that this interval magbe divided into a finite number of
sub-intervals in whmh:ﬂ is continuous and monotone.

We will again ify the formula for sa(@), and then derive
other sufficient COl)dlthﬂS We separate the integral (19) into

the sum of tw\krd integrals J R j ., makethe change
\ W —— _.

of Va"&bles —f = #in the second mtegral and then write this

new mtegratlon variable as & instead of &, obtaining -

Q” . J (766 + 29 + flo — 201 2L g

Since 3»(05) = 1 for f(¢)= 1, it follows that

) = J'Z sin(2n + 1)3d3
-

sin #
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Multiplying this by f(¢) and subtracting s,(4), we find

@) 16— sa(6) = - j *3276) 566 + 29)~sto - 26)}
4]

a1|__1_(_231 + ngﬁ
sin 8¢\
or introducing the abbreviations F(¢) for the right mm?lber of

(20) and {2/(6) — f(o +26)— f(6 — 20)} = (o, X

(20%  f(o) — sale) = JZ 8(¢, 6) sin(2n -} 1\1(19 = Fo).
LE I sin ¢
. A~
The difficulty in the discussion of F(¢)adeiscs from the fact that

the denominator sin § vanishes at the point § = 0. We will
now assume that

(21) gle, ﬁ}

sm g
holds for some interval 4= ¢, i.e. for some interval about the
point § = 9, while we will consider ¢ as fixed. Here ¢ and ¥
are positive constiQts. We now write the integral in the form

l-é M

L

~’~F(¢) ~—'r....+lj§....

TJO kis &
where .('\atlsﬁes the condition 0 < & = ¢. Then, since

!sm(‘{w{wtL 16| =< 1, B
J g(e, 6)

o sin @

M’

"\ ’

~ |
\ For any given small pomtwe quantity e, we can choose 3 sma

Ms

enough so that ™2 « ¢ 5" Having selected & in this manner,
w

we consider the integral

sin{2n -+ 1)6d6 l

J g(¢' sm(2n + 1)8d86.
TJ, sin 8
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This integral causes no difficulty, because the denominator of
the integrand docs not vanish in the interval of integration.

Let h(6) be that function which is identical with gkﬁl%)in the

sin
Q!
interval 8 =0 = T—; and vanishes identically in the remainder ,
O\
of the interval 0 < 8 < 27, sothat h(8) is a function of imte*
grable square. The integral becomes N\

P
L 3

2
! J R(6) sin 20 + odo.  KE

T™Jo

This, however, is the Fourier coefficient bQ.d;l of k(8), and
therefore approaches zero with increasing @. The absolute

. A\ € .
value of this integral therefore becomesHless than 3 when 7 18

sufficiently large. Therefore it'fé’ilogvs that
@2 £6)— sl < e

for sufficiently large #, gs.t‘abl]shing the convergence,
The condition {(2I)\is therefore a sufficient condition to
cnsure the convergerce of the Fourier series to f(¢) at the
point ¢. If (2Vy holds uniformly in ¢ and 0, that is, if there
exist two constants ¢ and M independent of ¢ and & such that
@1) hOIds.fQQO“-‘E & = 2rand |8] = ¢, thenf (¢) can be expanded
i1 & unigfoemly convergent Fourier seriesintheinterval 0 =¢ =2x.
Tliecondition (21) certainly holds unt ormly if the periodic
.{”W@'M #(¢) is continuous with continuous first derivative in the
\‘fmérml 0= ¢=2s. For

£6 + 26) — f(¢) = 26 (§) (@ <E<TF 20) .

|76 + 20) — 5(@)| _ 267 @),
| sin 8 sin 8 _
. i 0
But lim sn 6 _ 1, and it is easily seen that -—-—-i < 2 holds
LRS! . sin ¢
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inf)=g§=< %- . Let C be the maximum value of the function
If'(#)| for 0= ¢ = 2x (which exists because f" is continuous),
then N\
Ho 120 =7 < 4, and similarly [/ 220 =& s 1
gin # | C30 RN N
hence M = 8C ;":"«. ’
sin & )

so that (21) is satisfied with M = 8C and c"’;\f—

SN o

Also, (21) is uniformly satisfied if the hypothesis is merely
that f(¢) is piece-wise continuoug\with piece-wise continuous
first derivative, and at discontinuities satisfies the condition

@) 5®)= {56 SO+ f6 +0)} .

For at the discontinuities) "

Flp-+28) —f(¢4;02\’=29f(f), flo—260) —f(p —0y=26f(t1),
from which it féllows that
{6 + 20) AHs — 20)— §(6 + 0)—~ (fo — 0)| 8C = M,
,\: N sin @
so that,it'is seen that (21) is satisfied on account of (23). ]
(Xhe Fourier series for o function which is piece-wise contin-
wous with its first derivative converges to the function itself ot
(the poinis of continuity, and converges to the arithmetic mean (23)
N o the poinis of discontinusty,
The condition (21) may be replaced by the less stringent

condition
(21%) g4, 0| . M
sin 8 gr—e’

where @ is a positive constant (in (21), ¢ = 1). This condition
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requires that §'~¢ =22 2(9.0) remain bounded for #»0; on the

sin 6
other hand, 8(#,0) p need not be bounded. Using this condr-
Sll'!
. Q"
tion, we find <\
A\
j 8 9) =21 Tsin (20 + 1)8da9‘ = --J -—;gﬁ“,
b] sm \ Fa

7N
{ %

which can again be made less than ?by chgg&i;igﬁ sufficiently

small. The remainder of the proof is asbhefore.

- The condition (21%) is certainly fulﬁi\led if the function f(#)
satisfies at ¢ a ‘‘Holder condition; ”\1e if there exist three
constants ¢, C, a such that
(24) |76 -+ 8) — f(@) 5= C8* for o] =v.

(A function which satisfie§™a Halder condition is evidently
tontinuous, but is not necéssar:ly differentiable.}) For, by (24),

flo + 26) — f(¢)l Sifle £20) —fle) 6 |

stn § -8 sin 4
2C(20)° _ 2'*°C
9 B al I3

and (21*{follows easily,
Hf(d) satisfies a Holder condition uniformly in 0 “¢ =2x
i, t?'\f the constants ¢, C, o are independent of ¢), then the
,Fﬁurler series converges uniformly to f(¢) in the interval.
\Moreover, it converges uniformly to f(s), if f () is PlECﬁ'Wlﬁe
\ Y continuous and satisfies (24) in each interval where it is
continuous, and satisfies (23) at ‘the discontinuities.

Art. 5. Exzpansion in a Circular Ring

Following the expansion of a potential function inside a

circle, obtained in Article 2, we will obtain an EXpanmon valid
*
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in a circular ring-shaped region. This is the analogue of the
Laurent series in the theory of functions of a complex variable,

Let the potential % be regular in the region T bounded by
the circles Cyand €, of radii §; and &y respectively (4> I),
about the origin O as centre. Let P bea pointof 7. Let'Ch §
and C'; be circles about the same centre O, of radii R, atdR,
(R1> Ry), where R, is slightly less than /, and R, is sllghtly
greater than J,, so that P is between €', and (’,. i3 henwe can
apply Equation (38) of Chapter 111 to the region, S between

these circles, to obtain ’..,'\‘
I 1 y
(o)
(25) u=—1-'|- logla—u—u T s
2n

r an an |

1 N W

" 1Y)
ljf 1 du a(log—;)

log—— —u-—>——*% 1ds
2w |

! r on an

—u1+ug.‘\

We now conslder\t}e functions #: and z, separately. It is
. evident that gach of them is the potential due to a linear dis-
tribution afda double layer. They are therefore regular for
all pomts'})ot IYlﬂg on the circles €'y and C’;. In particular,
the ph\ent:al #1 is regular everywhere inside 'y, and can be
exl:{g?n ed there (and hence at P) in the form

P\ ao [ ] ;
a\ (26) #y=—+ 3 R%a, cos n¢ + b, sin ne}.
\ / 2 w=l
The potential «, is certainly regular for all finite points outside

log —) ]
C’;. The portion - __J __( "/ 4, being the potential
an

[
ofadouble dlstrlbutlon is also regular at infinity. On the other

[
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hand, the term -1-Jl g-—l-q—- ds behaves at infinity hke a
2 Z. ¥ in

potential of mass M = —1—'[ ds. Hence this is true also
2r ) dn Q)
for the function u., itself, so that L0\
1 N\
(27) s =M log-ﬁ + v, 3\ \

where the potential v is regular everywhepeﬁoi&side C’» and
vanishes at infinity.?2 Moreover, the valugof the constant M
isindependent of the radius R; of the c1@e C's; for the integral

du
b ds must, of course, have the sa\me value for any circle
%
c

between C; and C,. R\

The potential » is transformed by an inversion R’ = I/R
¢’ = ¢, into a potentlal which is regular in the neighbourhood
of the origin of the «’,#!{-plane and vanishes there. Hence this
transformed funct;ox;\has an expansion of the form

(lu ¢)\ § R (a_, cos ne’ + by sin nqb’)

p=1

This exp&‘nslo’n is valid for R’ < 1/R;. Hence we have-

(23]\~ 2 R(@_n cos 0 -+ b_y sin nd)

f=1

~.forR > Rs; hence this is valid outside C's. The series for %,
Lind o have the common regmn of convergence Re < B < Re

Thus throughout this region, and hence at the point P, we
have the expansion

@) u=4 }ao- +ailog R + z AleaR® + 0K cos né

" GuR® + bR sin ne},
We have c=0.

——

*See equation (39) and the end of Art. 7 in Chapter 3.



212 TreE PoissoN

!

meM=—%uTM

INTEGRAL IN THE PLANE Crar. VIII

8 is the desired expansion. Since Pis-

an arbitrary point of the region 7T, this expansion is valid

throughout the entire region,

Hence: A polential which s,

regular in a ring-shaped region about the origin as cenire may

be expanded in a series of the form (29).

The series is um'fo(?rdy

convergent in any closed region lying entirely interior to {lie'ring,

and may be differentiated there arbitrarily often.

The uniform conver
follow from that of the
%, and v.

in the following mann
L<R<h,

ao+ aglog R =
G R* 4 a_ R™® =

&

baR" + bR =

3o

1

T

1 1™ o K
— | @R, ¢)cosnede, I
T oAy

—
(%"

|
N

gence and term-wise dlﬁerentlablhty
cotresponding serics flj}‘ the functions

The coefficients of the expansipf 'may be found

er. First, for'@ﬁy‘ R in the range

R&

) ¢ 3

u (R, 4)98,

n 1,2,...

Tex

u(R, ¢) sin nd do, J

Now selecting twbxya'lues R, and R, for R, satisfying the in-
equalities I3 < .R.z( Ry < I, we find that

ﬂzo Iog Ri—awlog R,

r . B 2 ,
~C log Ry — log R, " log Ru— log R
(30)\h ; G;,,R? - a:,‘Rg" By = ame" - aan;” '
&N RY" ~ R3 Ri*™ — R;™
b = me’f— banRz b mel —bz“ 2_
tUORCCRY T TR IR
where
i[>
Ay = ?L u(Ry, ) cosnede | B =1,2

@31)
b!m

1 r
_;J.u #(Ry, ¢) sin ngpdo | n =0,1,2,
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From this determination of the coefficients, it follows that
the expansion (20) is unigue. For if there were two expansions .
possible, then by subtraction it would follow that (o, co, .. d_p
being constants)

0 =} (co + colog R) + 21 { {(enR™ 4 ¢ R} cos ngp
+(daR"+ d_oR") sin ngP

holds identically in the ring-shaped region T. Figst)the con-
stants ¢z, and dy, corresponding to @i, bis, given' by formulas
(31) with # == 0, are all zero; hence the coéfficients co, ¢'o, €x,
C—n, Uy, d_, are all zero. O o

Special cases of the above expan%(iﬁ‘ are obtained when
t=0 or h= ®. The case l,=(s" especially important,
giving the expansion of a potentialin the neighbourhood of
an isolated® singularity. The-$xpansion (20) is then valid
everywhere, except at the origin (centre), inside the circle of
radius . Ny ' B

We can now prove'the following theorem (essentially due
to H. A. Schwarz) ; (If the logarithmic potential % is regulay in
the neighbourhoad of*a finite point O (with the possible exception
of the point Q.5tself) and remains bounded on approacking O,
then u is alderegular at 0. For we may take O as the origin
and use thie expansion (29) in its neighbourhood, 0 < R < /..
In the determination of the coefficients, we may take R, as
smafl a5 we please. By the hypothesis, the coefficients @ea
Aad b, remain bounded as By » 0. Hence it follows from (30)

O\ that the coefficients a’s, gon, b may be made as small in

‘absolute value as desired by taking Re sufficiently small. But
since they are constants and do not depend on R. for their
values, they are all zero. This was to be proved. .

*A singular (that is, not regular) point P of #is called an *igplated’’

singularity if « ia regular at all points of 3 neighbourhood of P, except P
itself. The reader should give examples. '

Q!
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The above theorem remains valid when O is the point ai
infinity. The proof is immediate, after using the inversion to
change the point at infinity into the origin.

The hypothesis of boundedness in the region of infinity is_
certainly satisfied if lim » exists. Hence the theorem may bé

Ry N :
put in the following special form: If the potential u is régulor
in the netghbourhood of infinity (except perhaps at if:ﬁ:{;i&ﬁ, and

Hm u exists, then u is regular at infinity. 1t dodlows, of
B>

course, that R*Du is bounded (see Chapter II,\%?t 7).

Art. 6, The Equipotentials are Analytie)Curves

By using the expansion of a halfm\lonic function in the
interior of a circle, we will now ohtaid important properties of
the equipotential curves. Letthe potential «, regular in the
neighbourhood of the point @\take on the value u, there; we
will take O as the origin, and’ investigate the equipotential line

(32) il ) = ug
(a constant) in the\l?!:eighbourhood of 0.
The function w(x, y) is analytic (Chapter IV, Art. 1) at

0 if at lea,s\t:e}ne of the partial derivatives, say ki , is not zero
¢ dx

at O, BQQBO is a regular point of the curve. By the implicit
fuqc.i;i&l theorem, there exists one and only one analytic func-
tiony = f(x}), which is regular at x = 0, takes on the value
<‘9~~there, and satisfies # = y, identically in x.
In case both partial derivatives 2% , 9% Lanish at O, then
) dx 9y
0 is a singular point of the equipotential (32), and is indeed 2
multiple point, as will be seen at once. Let m, = 2, be the
order of the lowest derivative which does not vanish at O; then
we have in the neighbourhood of O the expansion
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# = o+ 2 R*(a, cos ng -+ b, sin ne),

since the coefficients of R, R?, ... ., R™! all vanish, while ¢,,
bn cannot both be zero. N
In order to solve (for ¢} the equation O\
. ow ™
(82%)  w — uy= 2 R"(a, cos ng + b, sin nep) = 0

<

or the equivalent equation
(82*%) H(R, ¢} = @m cOS m + b,, sin mep Rz?. Lo)=0

in the neighbourhood of the orlgm, ey may proceed as
follows.  First find a pair of values =0, ¢ = ¢ satisfying
the equation; that is, ¢¢ must satisfy the equation

Qs COS M -{-bmsi»tiﬂitb = {.
From one solution of this equation all the others are obtained

by the addition of kr where t is any integer. Hence the
m

AN .
eguation has exac{fy’m solutions in the range 0 < ¢ <

spaced at the equal angles -, The derivative

<)

%‘%{: m{— éin md + by cos mp)+ R(...}

O _ .

CammNamsh for R = 0, ¢ = ¢o. For this would mean that
mmu]taneously

\‘ N = @ SN Mdg I by cOS Mipp= 0,

N\ b 5N Mo+ A COS My = 0,
s0 that a,?+ b,,2 = 0: but g, and by, are not both zero. Hence
there is one and only one analytic function ¢ = ¢(R) which is
regular near R = 0 and takes the value ¢o there, and satisfies
H{R. ¢)= 0 identically. Corresponding to the m different
values ¢, there are m such analytic functions ¢{R). The cor-
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responding curves are identical with the curve # = ug in the
neighbourhood of 0. They cut each other in O at the equal

angles” . Hence we have proved that: The curves u=consi.
m ;

N\
are analytic curves. Any singular point can only be a multiple

point, in which a finite number of branches meet at equakangies.

Other types of singularities, such as corners, qu'\s;\ls, end-
points, and isolated points, cannot occur. For example, in the
potential # = x* — 92, the equipotential lingi:;l' = ( are the

straightlinesy = x and ¥y = —x, which cbat the anglesf.
o 2
Art. 7. Harnack’s Theorems \

Let D be a finite plane region bouinded by C. We will prove
the following theorem, due to.A% Harnack: If the series

*
[+ 18

N

33 Bouals, ),

sy M=l

with terms u, which:are regular potential functions in D and
condinuous in th%%féed region D - C, converges uniformly on
the boundary Cthen it converges uniformly in the region D + C
and represents i continuous potential function u there. The series
may be d@erentz’ated term-wise arbitrarily often in any region
interipr @6 D. The derived series converge uniformly in D
anfi\\wpresent the corresponding derivatives of u.
R 3 The proof rests on the theorems about the positions of
. (\maxima and minima, and on the Poisson integral. On ac- '
) count of the uniform convergence, for any positive ¢ there is
: an #, such that for any point 4 on € and any integer 9,

[a11(2) + Harald) +. . Funp,(4)] < e

The # is independent of 4, and dependent only on e. NOW
the finite sum :

Unp1(®, ¥) b Uniolx, N+... sy, (2, )
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represents a regular harmonic function in D, continuous in
D 4 C. lts values for all points of C lie in the range between
—eand +e Hence in the entire region D + C (remember
the position of the extrema)

otnsr®: ¥4 Unra®, 9) oo el M <6 .
from which the uniform comnvergence of (38) follows. .~Tﬁé\
function o Y
(34) u(w, y)= I tal%,) (O

= P\

is continuous in D + C, being the sum of 3 uniformly con-'
vergent series of continuous functions. T order to show that '
it is harmonic, we use the Poisson infegral. Let Pi(x, ) be
an arbitrary point of D. Takea qif'(;l'e K which lies in D and
contains P in its interior. Usg«ﬁie centre of the circle K as

origin, and let ! be its radius\ Then by Poisson’s integral,
Equation (2), N

35 wa(r,y) = ;_dfﬁtn(,;,)lz_"_ﬁdw, w=1,2. 0
i r

\\ihere, of cour,se:,’u,,(;b) means the value of ua{x, ¥) on the.
circle K. Hegee }

2 ® 1 [* p—R
=3 L[ ww =T e
:%" a=127J0 - r? N
,B@t~'éiﬂce Y %, converges uniformly in D + C, and hence on
m~\.J ne=l :

W~ -
Nthe cirdle K, this is also true for E.'m:,;(nl;)z——-—zE ; hencewe: .
r .

may integrate term-wise, which gives

25 o -
ulx, y) = %J {E un(\b)}z-g—.-—z—@dﬁu '
TJ0 n=1 r ]

or
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2
(36) (e, = 1 J "= Fay,

™

where #(y) is the value of u{x, ¥) on the circle K. Thus the
function u is represented in the interior of X by a Poissom
integral over the continuous boundary values %(y), so that'w
is a harmonic function there and hence is harmonicgn.the
neighbourhood of P. But since P is an arbitrary pdint'in D, .
the function # 1s harmonic throughout D. N

In a similar manner, it can be shown that: a §éyies of reguler
potential functions which is uniformly converge}t in every sub-
region of D represents a poleniial regular inJb

As for the partial derivatives of u(k ), we have for all
points inside the circle K “

X

du 1 — R?
| E il 9"?;—?( )as
and forn =1,2,3,...
aun_ 1 — R _
é;{ n(‘p)'_( 2 )d'#r

so that, again by erm-wxse integration,

du, 1 [*= i — Re
w F L] o2 (55
) \'\El 9x 2xlto 4 ¥) r? i
Tth\Qquatmn 1s valid for all points P in D.
3

? e 2
N “Since the series 2 (I R) > %.(¢) converges for all

dx r2 n=1

points ¢ on the circumference of the circle X and all points

(x y) of any sub.region of K, and converges uniform!y,

2 a“ﬂ( 3’)

CoOnv i . Hence
s erges uniformly in any such region

the umform convergence follows in any circular region lying

interior to D, Similarly it can be shown in general that
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iz, 3) _ @ 0" un(x, )

38) dx’ w1 BxP3Y*

i valid in the entire region D,

The series above converges uniformiy in every circle,\
interior to D. In order to show that the uniform convergence
holds for any sub-region of D (lying in its interior), we ugé the
Heine-Borel theorem: 1f every point of a bounded(glosed
region is an interior point of a circle, then the region is.covered
by a finite number of these circles. The cofivergence as
stated above follows immediately from this. J‘i?his completes
the proof of Harnack's theorem. \

A second theorem due to Harnack vs‘\\If wi{x, ¥), walx, ¥)
........ , is an infinite sequence of\yi r non-negative har-
monic functions in D, and if the series Zun converges al a point
0 of D, then il converges unéformly’iis any interior sub-region of D
and represenis a regular ka(méfric function in D.

Te prove this, constnict about O as centre a circle K of
radius /, as large as posSible but lying interior to the region D;
then for all interior'\inoints of K,

2

1
.’%\‘ﬂ.(x! y)'_' Q_J

"w) X w.
TJO T

: A :
.SIHCB bati i, and 12— R? are non-negative, the value of each
mtf:g%hs increased when r is decreased. The smallest value
which r can take is / — R. Hence

£\

o’

7 al, y) = 1_r' iR =1_li_1_2r*
N= oo |, we) =Ry W= Tl un(¥)dy,

so that

(39) :_,__I + R
2 (2, y) ] = Ruﬂ(o)

from the mean value theorem. The inequalities (39) hold for
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all interior points of K. From these inequalities, it is seen
that the series converges for all such points P, and converges
uniformly for any closed region lying entirely interior to the
circle K. It represents therefore a regular potential in the
interior of K. Now let 0’ be a point inside K but near its<
circumference, and describe about O' a circle X’ as largesas
possible in D, in general extending outside of K. Then, the
series converges at 0’ and hence inside the circle K’ and'repre-
sents a regular potential function there. By confinting the
function in this way, we can prove that the sefiés converges
and represents a potential function at any Jnferior point P
of D. Moreover, the series converges unj{grmly in any circle
lying inside D, and hence in any close{ Tegion interior to D
(from the Heine-Borel theorem).t )

‘Art. 8. Harmonic Continuation®™

Analogoustothe method of analytic continuation used in the
theory of functions, we have for potentials or harmonic func-
tions a method of "‘analytic continuation of a regular potential”
or “harmonic contintiation.” This is defined as follows: A
harmonic function “w, defined and regular in a region D, is
analytically continued when a function is defined which is
regular and hdrmonic in a region D', which extends outside D
but has a’Fegion D* in common with D, this function being
identical.with « in the common region D*.

The analytic continuation of o harmonic function across ¢
defmite piece of boundary is possible in only one way. Forify
{and w are regular potentials in 1’ and are identical with %
in D* thenp—wisa regular potential in D’ and is identically
zero in the sub-region D* of D’; from which it follows that

‘Replacing in the above theorem the condition ' non-negative”

functions by ** monotone " sequence (that is either uy = % & #y... o7

WEau Sy, - everywhere in D); one gets another Harnack Theare
The reader should prove it.
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y— wmust vanish identically throughout D’ (Chapter IV, Art.
1), so that » and w are identical.

The method, used in function theory, of analytic contin-
uation by means of power series has its analogue here in expan-
sions of the form (9) of Art. 2. The expansion is valid in the
maximum circle, just as in the theory of functions. O\

On the other hand, we must investigate more carefully the
process of “‘reflection” (well known in theory of fudctions).
The fundamental theorem is: If the potential u is ?égular ina
region D which has o segment AB of the x-axisps part of its
boundary, and if w is continuous in D + AB &nd vanishes iden-
tically ol the inner points of AB, then 4 c;mtbé analytically con-
tinued into the reflection D' of D in thex-axis by assigning to
the continued function at P’ the valt)  4(P), where P' is the
reflection of P. First, it is evidgnf.that the function

u(P) at theipoint P of D
(40) F = 0 at thé“mner points of 4B
—u(P)at the point P’ symmetric to P

is coytinuous in th‘s\‘é}itire region D + D', and in particular is
E!OI'ItlﬂllouS at t}}e’inner points of the segment AB. Moreover,
itisa regulag fdtential in D’ as well as in D. We will use the
Poisson ingegral to prove that F is also a regular potential at
‘the poinf8in the segment AB. Let O be any inner point of
_the segntent 4B, and take a circle K about O of radius f, small
‘E'qu"‘gh toliein D + I¥'. Consider the function

a1) & = l—r =Ry
2x Jo r?

Thls' function is a regular harmonic function in the interior of
K; it vanishes identically at p;oints on the line-segment 4B
ince "che symmetric elements of integration cancel in pairs.

180, in either half-circle it is identical with F, since F and &
take on the same boundary values in either half-circle and are
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harmonic within it. But F and & are also identical along the
segment A B, so that F = ® everywhere inside K. Hence Fis
a regular harmonic function inside K and thus, in partu:ular,
at the point O on AB. This completes the proof.

The above theorem may be generalized as follows: If the
potential u, regular in D, takes on the value g(x) on AB @ke:-e £
is an analylic function, then u can be anm’y!zraidy continued

across AB. N
Because it is analytic, g(x) can be e\[}dllt‘@d in a power
series
x »
g(x) = 2 cnlx — 3
n=20 .

in the neighbourhood of any inner pb}ni: xo0f AB. Itisknown
that this series also converges fer complex valucs of its argu-
ment and represents an anatytlc function of the complex
variable z =x + 4y in a cm:ular region about z = xg. This
function g{z) = Zea(z —~xu)" is therefore analytic in a circle
extending to both sidés of 4B, and takes on the value g{x) on
the line 4B. Thelreal part #, of g(z) is harmonic inside this
circle and takedon the value g(x) on AB. Hence w-uis a
regular poterkt1a1 defined in a certain neighbourhood above the
line 4B ’a,Qd vanishing on this line, so that, by the preceding
theoremn, it may be analytically continued across 45. But
sin@{ is already defined below the line A4 B, this gives anl
anaiytlc continuation of .
~ ) A still more general theorem is: If u is a regular potmmﬁ
\ ) in the region D, which has an analytic curve A B without singuler
points as part of its boundary, and if u takes on analyiic veltes
along AB, then u can be analytically continued across AB. Let
O be an arbitrary inner point of 4B, and let the equation of
the analytic arc 4B in the neighbourhood of O be

= ¢(t) = a¢} al(t -~ tu)—E— Gz(f, -— fu)2+. Ces
Ty =@ = bot it = t)+ bolt — )2 .-+
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with the point O corresponding to the parameter value fo.
On AB we have u(x, ¥} = u(p, ¥}, and this is, according to
our assumption, an analytic function of £. Since O is not a
singular point, &1 and b, cannot both be zero. Form the series

z = x + iy = ¢()+ W)
= +£bo+(&1 +ib1) (t '—tn) +(Gz+1bg) (t ""f,u)z-!‘. ..‘\.? A\
This series converges also for complex values of its \{a;i:z_\a_ble,
which may be designated by Z, and is an analytic fiinetion

z = flZ}y= aot ibu+(d1+'§bl) (Z — te) i—{ '.~..’.
defined in some neighbourhood of Z = i \Smce
L = ay+ i <D>
dZ Va

‘there exists a unique inverse fundtien, Z = F{z), whichisa
regular analytic function in sorfte region about 20 = 89+ 20
takes on the value o at g; and satisfies 2 = f(Z) identically-
This function maps the nefghbourhood of z = %, in a one-to-
one reversible mannergconformally on the neighbourhood of
Z =i, By this mag, the curve ABin the neighbourhood of O
maps into a portic}n\of the real axis of the Z-plane, containing
the point Z =4 If we set Z = X -+ ¥, the potential #

- defined on /oue’ side of the curve AB becomes a potential
U of (X,/¥)° defined on one side of the axis of reals of th-e
Z'Plabéri’nrhich takes on analytic valuesona portion of this
axis\ By the preceding theorem, 77 can be analytically ex-

' :thiIed across the axis of reals, and on mappifig this extended
{\function back on the (x, y)-plane we obtain an analytic
continuation of # across the curve ‘AB. Since O was an
arbitrary point of 4B, this theorem holds along the entire arc.
We note the following special case: 1f the entire boundary

of D is a single analytic curve without singular points (as, for
example, a circle), then a regular potential » which takes on

AR

- 38ee Chapter VI, Art. 4.



224 TrE PoIssoN INTEGRAL IN THE PLANE Cuar. VIII

analytic values on the entire boundary can be extended every-
where across the boundary, giving a regular harmonic function
in a larger region which contains D, together withitsboundary,
in its interior. However, if the boundary C contains points
where € is not analytic, as when C is made of several analytig N
arcs meeting at angles, these points cannot in general becton-
sidered as interior points in an extended region of regularity.

s
7%

Art. 9. Green’s Function in the Plane
§
We now come to Green's function. Jt{piays an impor-
tant role in potential theory, particularly, i\solving boundary
value problems, and in conformal mappig (Art. 12). Con-

~ cerning its physical meaning (in 3.dithensional space) in elec-

tricity, see Chapter IX, Art. 2.1 The connection between
Green’s function and the Diriglilet problem is based on equa-
tion (44). It can be shown.directly that the function defined
by the integral in (44) sol¥es the Dirichlet problem (see, for
instance, Frank-Mises:("Die Differential- und Integralgleich-
ungen der Mechanik"u\nd Physik,” Braunschwig, 1930, vol. I,
pp. 702-4). But we'shall only draw some conclusions from {44),
and shall soly€ the boundary value problems later (Chapter
XI) in anoher way. We now define Green’s {unction.

Let Rbe’a finite plane region with boundary curve C. The
Greew$function G for the region R is a function of lwe poinks
.P,:{{!:,\y) and Q:(£, v), of which P varies in R and Q in R+C

_aith the following properties: regarded as a function of (& ) with

/

P fixed, it is a regular harmonic funclion in R (except at P) and

continuous in R + C. It becomes logarithmically infinile 05
Q> P, in such a way that

(42) Glr,y:Em) — log =

Vie— P+ (y—a)*
is o regular harmonic function at P also. It vanishes o the

boundary C; that is, it has the value zero when P is any poini i

= wix y; &
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R and Q is any point of C. 1Itis, of course, first necessary o

prove that the Green’s function exists for a region. We assume '

that C possesses a continuously turning tangent except for a.

fnite number of singular points. The determination of the

Green’s function is then a special case of the first boundary {

value problem, since wis a regular harmonic function of (£, n)\
Z "\

in R, continuous in R + C, which takes on the value —log—
y W 4

on C. Since P liesinside R, this boundary value is,continuous.
The existence of Green’s function for certainirégions now .
foliows from the argument at the end of Chapter VII.  (See
also Art. 12 on p. 242.) AN

. &, L, 8G :
If G possesses a continuous norutal derivative P on C, -

the boundary value problems with,given continuous boundary
values may be solved if G is knowh; and the general boundary
value problem may be red(if:éd to a particular one, th_at of
finding Green’s functiom, To prove this, we may begin with
the formulas (for P, inside R) :

\§\( 8v _ 9%y =0

SO S \Mam on -

2O~ © .
2 ] 6(log-—)

) ;}{x,y) =_1..£ log-l_a_i.‘-—-u___——.i—' ds,

,'s§ 21r,tl:l y On an -

¢ .\: .. ] N -
ywhich hold for » and v any two potentiais regular in R fmd
continuous in R + C, possessing'continuous normal .derlva- :
tives. By addition of these, we find ' '

1
[ 1 ou a(log-}— +ﬂ) d
C . :
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Now let v be the above functionw = G — log i , which is per-
¥

. . . . .. adz
missible since the existence and continuity of -. “ follows from

dn
oG . . .
that of — ; this gives the important formula .
an A
1 £ O
(44) ux,y) = — — 2 9€ 4, W >
2r) an N
c "

It is possible to show that the hypothesieyﬁ:&?l continuous
. . . . N
normal derivative — is not required; to d({l;hls, it 1s necessary
an AN
to investigate more closely some of theproperties of the Green's
function. Since w is continuous in W+ C (and hence in the

. R 1
neighbourhood of P) and is geeerdingly bounded, but log?

‘becomes positively inﬁnité,”oﬁ approach to P, the Green’s
function likewise becomies positively infinite at P. Hence, i
we surround P by a(shnall circle lying in R, G takes on large
positive values e%}ywhere on this circle. Since G is zero
on the bounc!ary C, and G must have its minimum on the
boundary, itollows easily that G is positive everywhere in R.
We will z{é}r"assume that R is simply-connected. The equation

,\'\“ G =const.=¢ >0

thsn represents o closed analytic curve without singular pownis
\ \I¥ing inside C and containing P in 4is interior. For, this curve
is an equipotential curve, and hence is analytic. It must be
a closed curve, since equipotential curves can have no end-
points, and because it cannot extend to infinity since it lies in
a finite region.® Finally, if it did not contain P or possessed

81t cannot intersect the boundary C, on which G = O.
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multiple points, there would be a portion of R, not containing
the point P, bounded by an equipotential with G harmonic
inside and constant on its boundary; from this it would
{ollow that G is constant in this entire portion (remember the
uniqueness theorem) and therefore also throughout R, which »
is not the case. N
The curves G = ¢ lie near C when ¢ is small, and ngafxlf‘
when ¢ is large. It is evident that the family of curves for
0 < ¢ < « simply covers the region R. Inthe liql':t’ir’;g cases
¢+ 0 and ¢c» «, the curves approach the b gdary C or -
chrink toward P respectively. Any such curve G =c separates -
R into two regions; an inner region where Gy> ¢ and an outer

region where G < ¢.  On any curve of.%il‘e family, 9 is there-.
fore everywhere negative. P\ an

Apply (43), putting? = @, tajhe region inside one of these
curves G = ¢, which may be designated by Cei this gives, since
# possesses a continuous nofﬁlb.l derivative on this curve, '

1 [ . au A e ¢ [ou 1 3G
u(x, y) = o T (GE;;”‘S “E?z_)ds =3, Ta?,d“ 2 jE-uan ds-
e & Ce Ce
But the first integral has the value zero, since & is harmonic in
the interior, §6,that : :
) £ D G
~0 u(x,y) = —l%-jgf‘g;;d*"_

:%“ e

ETe .
IE[UW let ¢ » 0, and because % and — are continuous on ap-

7 .
gain get (44) without the

£ 9% . the boundary.
an

‘proaching the boundary € of R, we a

use of the hypothesis of continuity 0

Since any hypothesis on 9% 11as been eliminated, equation:

(44) gives an explicit solution of the ﬁrs.t bou“d?ry W.ﬂue
problem in. terms of the Green's function, if a solution exists.
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We need merely substitute for # in (44) the given boundary

value f {continuous). But it still remains to be proved that -

211_ §f—g ds is really a solution of the boundary value prob-

lem. We will not investigate this question here,
If the region R is not bounded, and for simplicity is assumed
to be the exterior of a simple closed curve C, the above defin-

ition of the Green’s function can be used still; it must'be regular
at infinity.

4G . . LY s
As for the hypothesls that — an is continualison C, this is

certainly true if C is a single analytic ch(e without singular
points, as a circle, for example. For, tlna" potential w takes on

™"

C the analytic values — log—l-, sQ that w can be analytically
r

continued (see end of Art. 8) eazergzwhere across C. Hence the
points of C are inner points of a larger reglon in which wisa
regular harmonic functien.  In this region, w has continuous

derivatives, and henx;é;'&z—u and G are continuous on approach-
ing C.7 X\ Ton an

The Green'd.function is symmetric with respect to P and
Qiie, N
45) D7 Gyiew=GEwx)
To prde this, let Py:(x,, 1) and Py:(xs, y2) be any two points
in R,'and exclude the regions around these points by two smail

" civcles about them, K, and K of radii 5, and 8,; apply Green's
{ Mormula to the remainder of the region, using

ﬂ(E, 1?) = G(xlt ¥, Ea ‘7) = Gl.; ﬂ(E, ﬂ) = G(x2s Va3 E! 7:') = G

"We shall solve the boundary value problems in Chapter XI undet
certain conditions as to € and f. 1f these conditions are satisfied and G
has a continuous normal derivative on C, the equation (44), with % re-
placed by f, certainly gives the solution. Moreover, it is obvious that
* (44) gives the solution if C is a circle (see Art. 1 and Art. 10).
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Siﬁée G, and G are harmonic in the region, we have
[~ 8G: 3G, ( ( 3Gs aG;)
°(G1-—a-l-£ 2%——)0:3 +;I; Gl% G!a ds +

d
f( aG: 661) _
Ij: I Gs o ds = 0.

AN
AN
Here the first integral vanishes, since G, and G vanish on C.
Now let 1 1 ~‘ 3 '
Gi= log — + wy, Gy=log —~ + 200,

1 T2 \J

where 7, and r; naturally represent the digtances P:Q and PeQ,
respectively. Then A\

r( 3G» G ,. _ (iléG; awl)‘
T Gl—a';; - Gaa—)d.s _%.’;w:lg_‘; G'z-é;' ds

K
ot . 1 :
N allog=
"4 1 302 ( fl))
'i"‘,\ %(Iog ;13-?; "'Gg ———-—'——"an ds.

: L~ & | )
The integrand gf\the first integral on the right is bounded in
the neighbowflieod of Pi, s0 the value of this integral ap-
proaches §sas4; » 0; but from (38) of Chapter 111, the second
integral(has the value —2xGy(Py). Hence

N\ .
R 298 lim £(G1@ _.ng"_j__(‘-"1 ds = —27Gs 1(&. ay= (o 9
O wrod an an

" &
h
\:

= —2r({xa, Yoi ¥ yih
and similarly, ' o

tim £ (6,26 - . 92) s = 426617
a8 e e = 2xG (w1, ¥1; %2 ¥2)-

* So that we finally have the result that o
Glxy, v1; %1, yo) — Glxz, ¥23 %00 y) =0
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which completes the proof of the symmetry, since P; and I
are any points in K.

In order to avoid, in the above proof, the nced of the hype

O\

thesisof a continuous gg on €, we may proceed as follgw

We use one of the equipotential curves Gy= ¢ > 0, é%fg}nate

by C, in place of C, and apply the Green's faormala to th

region between this curve and the two small ciréles excludin

P and P;, and then let € 3 0. We have %br to prove th:

I'( Gy aG, v
éﬂ}? . 1—a; Gg-—é‘; ({S > 0.
Now ,\\
f616—62d5=5£‘6—§;—:d‘5;
an J am
Ce 8
o\ 1
W% dlog=
" =ej r’ds-{-egéiu-ﬂds
A\ an J ad
'{h} r Ce
O =e(-2m 40
P .'; » 4 = ""21“'
AN/

singe wy is harmonic inside C,.

2N .
'xLet # be the maximum of |G:|on C,; then since %%‘ <0on ¢

A\ ETel
AN IjG:-é;lds‘(p(—}Ea—a% ds)=2?m
t Ce

G
‘i((;]?ﬂj - Gg%—%)dsl‘( 27{e + p).

) |
Now when ¢5 0, C, » C, and x> 0 since G, vanishes on
%0 that we have proved the desired limit.

Hence
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From the symmetry it follows that & is also a regular
karmonic function of (x, ¥).

In the above, the symmetry of G in R has been proved.
We may now extend the definition of G, therefore, by allow-
ing P (as well as Q) to lie on C as well asinside R. We define
G(P,Q)= 0 for all points Pon C and Qin R 4 C, excludiqg:‘\
only the possibility of P and  coinciding. Then the functidn ™
G(P, Q) is defined for all distinct pairs of points P, Q in the
closed region R 4 €. The property of symmetry holdsiaiso
in the closed region. R&Y

Art. 10. Green’s Function for the Circle | Y

The Green's function for the circle maybe explicitly repre-
sented by elementary functions. Let the'eircle have the origin
0 as centre and the radius . Let the Point P':(¢’, 9"} be the
“reflection” in the circle of the pgint P:(x, ¥); ie., the point
with polar coordinates R', ¢’ gi¥en by the equations

Let r:‘ be the distancé\frﬁm Q to P’; then for all points Q on
.the' 1:1'rc1.1mferenc§’ ofythe circle the ratio 7/’ is constant, that
15, it 1s independent of Q and dependent only on P. For, on

account of the similarity of the triangles OPQ and OQF’,
:"\"~

’\\" . f-' =
r

N

L

lorall'points Q on the circle C. Hence the Green’s function

7N

Qs Biven by the expression

(48) Glx,yit,n) = — log% +log1'—2 = log-l — logz—.

r ) r R
4 It. 18 easy to check the fact that this function has the
efining properties of the Green's function.

Q"
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which completes the proof of the symmetry, since Py and Py
are any points in R.
In order to avoid, in the above proof, the nced of the hypo-

thesis of a continuous g on C, we may proceed as follows. O\

We use one of the equipotential curves Gy= ¢ > 0, designated
by C, in place of C, and apply the Green's formulg o the
region between this curve and the two smali circlqa,}:fﬁluding
P, and Py, and then let ¢ » 0. We have only'tpf préve that

w
5(61@ _ G’a_Gl) dS-)-O
an dn \

A\
Now O
3Gy L&G; ’\
iala ds = eJ -5-”-¢f3 O
" [ PN
N 1
’.a}og..
- e N L£] £a_w.=
= e} n ds -i-eJ n ds
imx\ . Ce
\\ =me(—2n)+ 0
O - —2re,

since wy i‘i?i;innonic inside C,.

t :Qﬁ’h i ince 28! C.
<$l the maximum of [|Gy|on C,; then since = <0on C,
O\

Hence
li(c,%‘ - G,%i—'—)ds‘< (e + 1),

Now when ¢ 0, C,» C, and 4+ 0 since G, vanishes on C.
so that we have proved the desired limit.
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From the symmetry it follows that G is also a regular
karmonic function of (x, ¥).

In the above, the symmetry of G in R has been proved.
We may now extend the definition of G, therefore, by allow-
ing P (as well as ) to lie on C as well asinside R.  We define
G(P, Q) = 0 for all points Pon C and Qin R + C, excluding
only the possibility of P and Q coinciding. Then the funCtion
G(P, Q) is defined for all distinct pairs of points P,Q\in the
closed region R -+ C. The property of symmetry'jﬁoids also
in the closed region. N

Art. 10. Green’s Function for the Circles

The Green's function for the circleynay be explicitly repre-
sented by elementary functions. Lef the circle have the origin
0 as centre and the radius . Letthe point P:(x’, 3) be the
“reflection” in the circle of thespoint P:(x, y); i.e., the point
with polar coordinates R, % given by the equations

'r“=f -
,ime{ R’ ¢=e

Let rj be the distgﬁsé from @ to P’; then for all points Q on
the. m‘rctxmfers{nm of the circle the ratio r/r’ is constant, that
la, it is mdepepc?ent of @ and dependent only on P. For, on
account o\['ﬂre similarity of the triangles OPQ and OQF’,
’\..’ 1 - R

N rool
\ff’r all points Q on the circle C. Hence the Green’s function
/W given by the expression

“8) G(x,y:¢m) log L R 1 !
Yk m — - +log= =log= —log-—.
e Bt PR

a It. is easy to check the fact that this function has the
fining properties of the Green's function.
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- The symmetry of G can be made evident as follows, Since
,_Pxe Py

_ﬁly=ﬁ!

it follows that

N
; 2 2 z
/(B
NN “
P : iy )2
= — — tR —~ — R N
1/ R H ) +(R ] \\

= V= 2B(xt + yn) + RABEP).
N
(46"  G(x,y; & m) = —logV(x = BiF(y — n)?
+ logV B~ 28(xt + yn)+(x2+‘ y) (84 97 — log

The symmetry of the functlon rs evndent when written in this
form. {

Hence

The Green's function for the exterior of the circle is
~\

L) 1 l

_ ’\‘G’= log; —log—R-;;.
In this, of couiée: P lies outside the circle and P inside. That
G remains re(gular when Q:(¢, ») goes to infinity, may be seen

R
as fol&ws we may write G in the form G = log + log =

Srgce R/l is independent of (£, 3), it is sufficient to prOVe the
X f

\ regulanty of the potential log —~ =g at mﬁmty But, as
£ v’y o with P fixed, it is evu:lent that~ + 1, so that

lim g = 0, which is sufficient {(see Art. 5). Itis 1mmedlatei}’

evident that G satisfies the other characteristic properties
which define the Green’s function.
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We can now give another derivation of the Poisson integral,

by applying (44) to the interior of the circle C. The formula

is certainly applicable, since the normal derivative of G is
ohviously continuous on approaching the circle C.  From

Gz_lngr+logr’+log1—§, N
A
we find 8 _ _dlom r + 3 log r , since log R is iqdé?:’;eu-
on on an S
dent of (£, %), or '\"\:’
aG _ cos (r,n) _cos(r’, m) 3
an r r p N
Since 2= 24 s 2l cos {f, v?)
R = 4¢84 2irc08 (v, n),
this gives oG —1 (12 o S i sz)
an 21 v1"‘2' . '
Now RR' = I?, and %= %z'since Q is on the circle €, from
FAN
which it follows that¢\J
’\\ 2_R? R:—R
@ T
ne ~1\]2 — R?
From this\‘@e find finally that 3 =(——})£ R » 50 that
O an ! r
.s’\ — - 2
"‘:; u=___1 ua_gd3=-1—§ﬂp Rds.
AN or | om  2nl 7
O L r

"\‘ No o/
N\ This is Poisson’s integral.

Att. 11. Green'’s Function of the Second Kind. Charac-
teristic Function

~ The Green's function of the second kind N(P, @), also called
the tharacteristic function, is defined in the following manner
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(compare Art. 9): Itisa regular harmonic function of Q:(£, %)
except at Pin the region V, continuous with continuous normal
derivative on approaching the boundary C. !t becomes loga-
rithmically infinite at P, in such a way that N

1
(47) N(P,Q)— log" = w(P, Q) 5
r ¢\
is a regular harmonic function at Palse. On Cit saﬁ‘sﬁes the
boundary condition RN
(48) N _ A
dn v

The constant ¢ is not arbitrary, but igm\t}zrmined in the fol-
lowing manner: since w is harmonioe\té'rywhere in V,

ow o\ |

— dsy= 0

J an< \ 6.
so that ”:';"
[oN . ( 1 )
o ds = = —{ log- 1ds,

J ds c\J ds = cL = T 3.\ 08 §
¢ y \ c
where L is the penmeter of . But

x g ds = @ — log— ds = T
'} Bn }J{a

25
whe'}:\K is a small circle about the centre P. Hencec = — 7
md ) The proof of the existence of N is a special case of the

\ 4 second boundary value problem, since w, considered as a func-
tion of Q, is a regular harmonic function in V, continuous in
V + C with continuous normal derivative, which satisfies the
boundary condition

an L on
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Hence it follows that N(P, @), in case it exists, is uniquely
determined tc within an additive constant; this constant,
however, may depend on P, ' _

Just as in the case of the Green's functien in Art. 9, we can
prove that the characteristic function N(P, Q) is symmetrie, {
that is, A
{49) N(P, Q)= N(Q, P}. ~\
Hence it follows that this function is uniquely det&rmlned
but for an additive constant independent of both ‘P and Q.

If 4{P) is a function, harmonic in ¥V and qenftmuous with
continuous normal derivative in V4 C, then

(50)  w(P) = — T N(P, Q) d +\2 % uds.

I u is sought as the solution of,.the second boundary value

problem with the boundary qq‘i;"eiiﬁon g—z = f, then this boun-
dary value can be used in the above integral. Since # is only

determined up to an additive constant, we can prescribe the
condition jg uds = 0\\ "I;hen we have the equation

c 0
(51) utp) = 1 £ NP, Qf(Q)ds.

c
Thus th\ Sccond boundary value problem is reduced to ‘the
dEtermmatmn of the characteristic function N(P, @). That
.J€ans: Equation (51) would give the solution if a solution
\e:x:sts _ -

Art. 12. Conformal Mapping and the Green's Function
Let Z = 7(3) be an analytic function (single-valued) of the

*In Chapter X1 we shall prove the existence of the solution under
certain conditions as to C and f. .
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complex variable 2. We assume that it is regular in a neigh-
bourhood of 3 = 34 and the derivative does not vanish at z;
then the inverse function s = k(Z) is singlc-valued and ana.
lytic regular in the neighbourhood of the corresponding point
Zo= f(30). (This is the analogue of the implicit functiog.
theorem for real variables.) Then the region around g, js
mapped in a one-to-one reversible manner on the neighﬁéur—
hood of Zy by the function Z = f(z). We will investigate
this mapping. ~‘ R
: ¢
Let C be an arbitrary curve through zywith continuously
turning tangent. By the mapping, this corfesponds to a curve
L through Z,;. Letzand Z be correspiit’\ ing points on C and
L, then the derivative f'(z,} is the Mimiting value of the differ-
ence quotient, o\
Fa=gim 2220,

By 2 — Zq

Z :7.5212}: (f'(z0)+ €) (2 — 30),

where lim e = OX\ﬁence
2yt .

W22 -2 = |Fe)+ |z —
~ave (Z — Zy) = arc (f'{(z0)+ ¢) + arc (z — 2p)-
(By'ﬁrc (s — 20} is meant the angle which the directed line-

and

_.segent 2,z makes with the positive real axis of the z-plane,

o’

~and arc (Z — Zg) has the same meaning in the Z-plane.) Now

when 2+ 3 along C, Z » Z; along L; then
lim arc (s — 20) = ¢, limarc (Z — Zo)= ¥

are the direction angles of the tangents to C and L at 2o and Zo
respectively. On passing to the limit, since ¢ 0, we have

¥ = ¢ + arc f'(zq).
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Since f'(20) % 0, arc f' (20} has a definite value.

Now f'(2) is independent of the curve C, being only depen-
dent on 2, (and the function f). Hence, if Cyis another curve
passing through 2o, and Ly is its image or corresponding curve
through Z,, then the tangents to these curves have the direc-

tions ¢1, 1, such that A
Y= 1+ arcf (o). ¢ :(
From this it follows that "‘z"."a
hi— ¥ = & \\

Hence the two curves C, Cy make at 2o thg»gqme angle as that
made by the corresponding curves L L ADZ,, both in magni-
tude and in the sense of rotation. Eoif%‘xis reason, the trans-
formation is called "angle-preser\:ingl’ or ““conformal.” Hence
an analytic function gives o copformal mapping ot every point
where ils derivative is different, from zero.

We also have N

\gﬂ = 16 el

or

NS lim M = | f'(zo)l-
..\’Z'\" 3 — 2¢ | ,

The 7atio’ of the lengths 77, and 77, has therefore 2 value
i“dé.f)endent of C and dependent only on Zn pamely | @)l

. {nthe limit, and the elements of arc-length have of course the
Jsame ratio. This can be less exactly exp lio
Infinitesimal distances in all directions from 2o are magnified
or enlarged by the same factor | f' (50)| which may, of course,
be smaller than unity. If 25, 22 are two points near 30, and the
three points map into Zy, Zs, and Za respe(_‘.tively, the Erl;mgle_s
#12020 and ZZ:Z, are similar; or more precisely, become .more

and more nearly similar when 21 and 22 approach 7. Hence
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we say that any small region and its map are similar, or that
the mapping is a “transformation of similarity” in the small.
Evidently all the directions through 2, are in one-to-one cor-
respondence with the directions through Z,.
It is obvious that the inverse map is also conformal, since(
dz |2 1 O\

dZt  f(z0)’

Ny

and does not vanish. Also, if Z = fi(s) (with"f’itzu) # ()
gives a conformal map of the z-plane onto thé Z-plane, and
£ = folZ) (with f's(Zo)0) gives a confgrindl wmap of the
Z-plane on the {-plane, then, by combining these functions,
the resulting function \ O

£ = frlfi(el

gives a conformal map of the"?—'pla:ne onto the &-plane, since

de dZ_dz

Examples of conformal mapping are found in all books on
theory of functiong and in many advanced calculus books. For
example, Z = gyc, where ¢ is an arbitrary {complex) constant,
is a translation. Again, Z = ¢z, where 8 is a real constant,
is a rotation’about the origin through the angle §; and Z = k2

«ay
N

= f2(Zo) - fi (20} # 0.

' (with £éal’s) is a similarity transformation, or stretching, from

thed éin as fixed point. The general linear transformation,
which can be written in the form Z = ké'z + ¢, is the

O\ . . ) . d
~\result of the combination of a translation, rotation, arn

enlargement. The function Z = 2? has at the origin the de-
rivative f'(z) = 2z = 0, and it is easily seen that the map is 00t
conformal at the origin.

We now pass to our real topic. Let V be a simply-co%
necled open region of the z-plane (that is, we do not consides
the boundary curve C to belong to V). Then we are interested
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in the problem of mapping this conformally on the interior of
the unit circle of the Z-plane. Thisisa problem of mapping
im Grossen or “‘in the large”, instead of im Kleinen or “'in
the small”” (i.c., in the neighbourhood of a point). '

To begin with, we will assume that there exists a function

analyticin V, Z = f(3), which maps the region V on the region |
|Z| < 1 in a one-to-one, reversible, conformal manner. Sup-")
pose that the centre of the circle, Z = 0, correspondszt'o.}he '

point g = 74, s0 that Zo= f(z¢) = 0. The power serigs expan-
sion of f(z) in the neighbourhood of zo then has 'f{&'foml
@)= ai(z — z)+ as(z — 20} - Aana=g) "t
for the first term must disappear, since go.> f(zo} = 0. On
the other hand, f'(z0) = 17 0, since ifj;h\is erm were zero the
map would not be one-to-one at ze. Jfwe put '
1) =(5 — 20)g(®), g(a)= Gk Gals — 2 ¥ -
then g{zq) = 0. Moreover, g(z): eannot vanish anywhere in v
for if g(z;) = 0, where z, is @ny other point than % in V, then
we would have f(z;) = 0¢so that the point z1 would map into
Z =0, and the ma.p'wg\m):ld not be one-to-one. We now make
the claim that _ %\~ '

¢ 1
O G =log——
CER
is the Gmﬁ}s function of V with the singular point Zo.
E“K\iéntly G is the real part of the analytic function

o 10g_1__ .
_ oN
f()r lﬂtf(z) — Reiﬂ’ then
1 1 1 L G
log - = fog — — if, aad log—=— =18 =™
@ TR el _
Hence G is certainly harmonic in V. Let H be the harmonfc

function conjugate to G, then

Q
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\* where 7 is the distance between the points 2, Zo, and u is har-

N\
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. 1 1 1
G + iH = log — = log ——— +log -
f(2) B ¢ g(2)
Moreover,
G = log—— +log—
= log —— _r ~
|z — 2] |g(2) |

is regular in all V except the point 2 (since g{z) # 0), And has
the characteristic logarithmic singularity of the quén s func-
tion at 2 = z,. Finally, when z approaches the hautdary of V,
then Z approaches the boundary of the unig&iféle; therefore
| fz)| » 1 and hence G » 0. Therefore Gfz) has all the de-
fining properties of the Green's function® Hence we have
proved that: If the analytic functio 2= f(z) maps the region
V in @ one-to-one reversible manngh o the interior of the unit
circle, so that f(z0) = O, then ™

G =alog ——

el
is the Green's function @V with the singular point zo. Evidentiy
f@)= e CH, N

We will now.prove the converse of the above theorem.

Let G(z, 20) li€)the Green's function for V with the singular
point zq, and/let H(z, 27} be the conjugate harmonic function.
Gz, sylj‘iias, by definition, the form :
3§"

~

Gz, 20) = log L + u(z, 50),
¥

monic single-valued and regular in V. Lets — 20= re, and
designate the function conjugate to « by v(z, 2o); then

G+iH=logl-—£¢+u+iv=log 1 — F(2),
r z— %

where we havesetu + i = — F(z),andwhereH =7 o +v
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‘Here v as well as % is a single-valued haemonic function. On
the other hand, ¢ is infinitely multiple-valued and increases
monotonely by 2% when z makes a complete circuit around 2,
in the positive direction. Hence H is also infinitely multiple-
vatied, only determined to within an added multiple of 2,
and decreases by 2r on a circuit around z,. It decreases mono*
tonely along an equipotential curve G = const. For, onsuéh

7"\
acurve g—G < 0 everywhere (see Art. 9). - On the other hand,
n N
g—G— = %{f (the last symbol meaning the dg«r,ﬁr&tive in the
1 5 4

positive direction of the curve), since & and'H are conjugate

functions, so that the Cauchy-Riemaxqi;equations are valid.

Therefore %J—H < 0 everywhere on theCurve G = const.
s « N

After these preparations, ;tip‘; proof is simple. We set
Z=fs) = e TG ~ 50" = (5 — 58

where g(z) = 7@, like{P(3), is analytic regular in all ¥V, and
2(z) % 0 in V (sincelthe exponential function can vanish for
no finite value of 35 exponent). .
Since G is pésitive throughout ¥ (see Art. 9), it follows that
AO lf@) =6 <1 o
throughtytt V. Hesce to every point z of V there correspﬂl?ds
a D,Q‘;ﬁ‘z interior to the unit circle. Now we must show, con-
versely, that to every point inside the unit circle corresponds
~(Dpointof V. LetZ;= ¢ ° be such a point; since | Z1| < 1.
N\ &> 0, while b is an arbitrary real number. The point Z, lies
on the circle| Z,| = ¢~ This circle is the map of the Cu‘;‘te :
G = ¢ = const. of the z-plane, thatis, by Art. 9 (because V18
supposed to be a simply-connected region), an analytic closed
furve containing 2, in its interior. Qn this curve, since 't-h»?
function H monotonely decreases by 2x for each revolution,
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there is just one point for which H = b (or differs from 5 by
an integral muitiple of 2). So that in fact there corresponds
to Ziin | Z1| < 1 one and only one pointz, of V. The map is
therefore one-to-one and reversible. Jlorcover, the point
5 = gy corresponds to Z = 0, since G{zy) = + =. Hence.wf\
have the theorem: If G is the Green's funciion for V wigh, e
singular point 2o and H is ils conjugate function, then the.gublytic
Junction «

f(Z) = e—G—iH £

maps the region V in a one-to-one reversible mam&:’” on the interior
of the unit circle so that zo corresponds io itpenlire.

The above theorems show the closé\gonnection between
the conformal mapping of a simply-cﬁ{nnected region and the
Green’s function of the region. The’ existence proof for the
Green’s function for such a regian'and the existence proof for
the conformal mapping of V8t the interior of the unit circle
are therefore completely ‘ec};di'valent. In function-theory, the
existence of a functionswhich gives such a map is proved by
the methods of the.theory of functions, and hence it follows
that the Green’4 furiction for V exists. We will prove, con-
versely, the exidtence of the Green's function for a closed region
with boundary having continuous curvature, by solving the
first boundaty value problem by the method of integral eqiia-
tion%émd hence by using the above theorems, give an inde-
. pesident proof of the fundamental theorem of conformal mapping,

\thlCh was first stated by Riemann: Every simply-connected
\region bounded by o closed curve with continuous curvature ot
. I?e conformally mapped in a one-to-one reversible manner on the
inierior of the unit circle.

Riemann’s theorem was not confined to regions bounded
by curves with continuous curvature. We want, therefore, 10
stress that it is possible to carry out the existence proof for the
solution of the first boundary value problem for more general
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_regions, in particular for every region whose boundary con-
tains more than one point. Accordingly, the fundamental
theorem is valid for every simply-connected region whose
boundary contains more than one point.
Since there is only one Green's function for V with the,
singular point 2q, the mapping function f(z) = e is esseri
tially uniquely determined.? However, the function H,éon:
jugate to G is only determined to within an added cofistant.
In order to bring out the effect of this, replace F by H — v
where v is an arbitrary real constant and H i€ completely
determined. Then N '
z "—'f(Z) — e-yt'e—G-iH .

\ o

is the most general mapping fuﬁction‘ { ihe desired sort.

This mapping is a combination»df the mapping functions -
Zi= ¢ and Z,= Zi "', The latter is a mere rotation of
the Z-plane about the origin, :th}bugh the angle v, which is
arbitrary; it carries the unifitircle into itsell.

Hence it follows that; there is a unique one-to-one rever-
sible conformal mappifg of the simply-connected region 4
on the interior of the unit circle, which carries a prescribed
paint 2y into the ‘C&tl‘e of the circleand a prescribeq direction
of the z-planeat.2; (say the direction of the x-axis) into a pre-
scribed dire¢tion at the centre of the circle. _

Let ¥ and V: be two simply-connected regions. Let
the cohverse of the map described above map the interior of
the Ciecle on V. V) may be mapped on the circle, afld then
thescircle on Va; and thus, by combining the analytic func-

“tions of these maps, we ohtain a direct map of Vi on Vs.
Hence two simply-connected regions may be mapped in a
one-to-one reversible conformal manner oft ea'ch other. The
map is unique if a point, and direction throughit, of one region.

. . does not change f (&)
*The addition of an integral multiple of 27 t0 H doe :
because the expanential function has the period 2. :
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is required to go into a prescribed point, and direction through
it, in the other region.

The Green’s function approaches zero on approaching the
boundary. It can be proved that the conjugate function H is
likewise continuous on approaching the boundary if thel™
boundary hascontinuous curvature, orevenonly a Continuou§y
turning tangent. (Of course H is not unique or smg]e-wcsjued
on the boundary.) From the continuity of G and H it follows
that f{z) is continuous on approaching the bm,mdiry, and
hence that the boundary of V is likewise mappqd'm a one-to-
one reversible manner on the circumference, wi-the unit circle.

\,

a\,,



CHAPTER IX
N
THE POISSON INTEGRAL IN SPACE .
Art. 1, Solution of the First Boundary Value Probler for
the Sphere. The Harnack Theorems for Space N7

The solution of the first boundary value prob[ém for the .
interior of the sphere .S with radius  about thcfmgln as centre
is given by the Poisson Integral v/

)] U= — J‘Jf(cos(r ) +\’§-T dS

For, in the first place, u is a reg,u‘lar potentlal functlon in the
interior, being the sum of the.potentral of a double layer,

V= ﬂ(‘_ _f_)cos ) s
. 2x r?

and the potential (a;urf ace distribution,
S (ae
\ ~;’;x v g 4l
And secon&h; # approaches the required boundary value when

P 0"*’!%@ approaches any point 4 of S. For, from {(17),
Cham

AL V,,_z,,( fA) Lt J( f(@))cqs (rous ) 45

QF o
and therefore, since cos {r, n) = — :‘3_3 when P is at a surface
point 4,

=hat i 19 s,

-’ft?t‘f LETY .
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Moreover, since W is continuous on approaching S,
1 HS
W_: W _ — ( _—
A ol ¢ J’ r
Hence
u_= V_+ W.= f4. R
2 \D
That is, the function ¥ defined by (1) approaches the requ\u\ed

boundary value when P approaches the surface from” the

interior, or along the negative end of the cxteljigfr-;')‘ointing
normal. R&S

The integral (1) can be simplificd as followse’ we have
Riem 24 p24 2r cos (?’.’ﬁ.}\\“’

_ (cos (r, n) 1 )___'J‘{,\—VR?

r 2l O 2
so that Poisson’s integral takes the form
SfF n — R
(2) u(x, ¥, 8) = .1.:_ J.J f } R ds
N\dr i
AN I3

If we designate\ﬁ;{’gngle QOP by a, then

o H= 4 R2— 2IR cos o
so that P\ 4

@Y @=L J J ok ®
P\ 0= § ! G FR= 2R cos "

\Let the polar coordinates of P be R, 6, ¢, where 8 is the
- 7N

\éﬁ:gle from the z-axis and ¢ corresponds to the geogfaphi_c
longitude, so that

x=R$in0cos¢, y=RSin65in¢,, z =RC053.

Let the polar coordinates of Q be /, #, ¢’. Let P with coordin-
ates, 8, ¢ be the projection of P on the surface S of the sphere,
and let N be the intersection of the g-axis with the sphere




N
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\
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{("north pole"); then the law of cosines of spherical trigono-

metry applicd to the spherical triangle PON gives

(3) cos a = ¢os # cos &'+ sin 8 sin 8" cos (¢ — ¢').

This expression for cos a is to be substituzed in (2%). N\
We can write (2%) in the form A

 \
) =t F’J" 10, ¢) G- R)sin b gy
4rJo Jo(P+ R*— 2IR cos a}”"

The formula . (4), combined with (3), is the ‘starting-point
for obtaining the expansion of % in sphericalMiarmonics, which
is the analogue of the expansion of the Joga¥ithmic potential
in trigonometric functions obtained in/ghé preceding chapter.

The Poisson integral for the ex‘ter\ibr of the sphereis

_1 Ly Seos (r, 1) ”)) 4.
((.5) “"E;”f(g:r“ 7

5 e
It solves the second form sﬁé’cibn of the exterior boundary vah{e
problem (sce Chaptep{WI, Art. 3); for in the first place « is
regular outside thg;"sbhere, also at infinity, being the sum of
potentials of a stirface distribution and of a doubl.e layer on
the sphere, andysecondly, wy = f4, as may be easily proved
from the redlts in Chapter V, Arts. 4 and 5. The mass of

the aboyeselution is evidently
."\‘~

B) AN\ _ 1 ” 15,
(‘):’\ M 4r] S /e

' The Harnack theorems, now that the Poisson integrat has
been derived, may be taken over word for 'warc% for space from the
corresponding theorems for logarithmic potential.

Art. 2. Green’s Function in Space

Let ¥ be a finite region of space bounded b
face S, having a continuously turning tangent p

y the closed sur-
laneexceptfora
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finite number of edges and conical points, The Green's function
for V is a function G of two points P:i(x, y, z) and Q:(§, n,{), of
which P liesin Vand Qin V 4+ S, with the following properties:
As g function of (£, n, ) it i5s a regular potential in V exceptal P,
continuous in V + S and vanishing on S. It becomes infinite gt
P like the reciprocal of the distance QP, in such a way that (°

M ey b= Gy 260 \O
1 )

S VE S0 e -

is a regular potential function at P also. N7

The determination of the Green's {u?}&’ion is a special case
of the first boundary value problem{’sifce = must take on the
value —1/7 on the boundary. «} -

If the Green’s function hag #'continuous normal derivative
on Sand if u is a regular pofg'hfial in V, continuousin V + 5,

then o
A
U= 1 J.J n 561—GdS.
X\ 4nJ) " om

L >

The Green's :f}lf;ction in space likewise has the property of
symmet'r.g,;'\

z\,\"": G(x‘ y’z;E’ M r)= G(E! ﬂ;fix-yr Z)‘

,,.\:“\:.’ffh_e Green's function for the interior of a sphere S about
3 ‘the origin of radius I is
() G=1_

I
4 R

~ |

wh'e_re #" is the distance from  to the point P’ (the inverse
point o reflection of Pin S) which lieson the line OP extended,
at the radius R’ = 2/R from . The fact that G vanishes 00
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the surface of the sphere follows from the relafion

r _R
Y o1

just as in the case in the plane. We will again bring G into 4.
form where its symmetry is evident, We have

¥ = Px/RY Y= Py/R, 8 = P/R, (O
ro_ By 2 12}' — 2 Itz - )?\ .
Rr ﬁ/‘/(uﬁ—ke)+(ﬁ ”)+(§~.‘R{ ,
so that : ,‘f\"'
8 6=— ! '
| Vi — 2+ (v — 0P - 02
~ 1 L6

VI 2t 4yt 2t) KB F 7+ EF P+

" The Green'’s function for theéexterior of the sphere is

a3

The reader should shgw that this behaves at infinity like a

potential of mass‘({i"—_;_ . : ‘ o
Give the general definition of the Green's function for the

exterior of () closed surface. o )

The physical meaning of the Green's function 18 easily

: Show%“ff S is a grounded electrical conductor and if the unit

C*}ai’ge 1s concentrated at P, then :

: o\: $ 1

\m‘;“ G(P,Q)=—;+w(P,Q)

is the value at O of the potential due to the chat:ge at P and

the induced charge on § (remember that G vanishes on .5).

' The function L is the potential of the unit charge, and wis the
- .
Patential of the induced charge.



250° THE PoissOoN INTEGRAL IN SFACE Cuar. IX

Art. 3. Expansion of a Harmonic Function in Spherical
Harmonics

We will now obtain the expansion of an arbitrary potential
or harmonic function in a series of spherical harmonics {com-
pareChapter IV, Art.3). Letu{p,6,4)be harmonic and regulat QO
in the interior of the sphere S and continuous on '1pproachmg~

S, and let (i, 8, ¢) = f(f, ¢). Then u can be rcpre sented by
the Poisson integral (2),

~ \
7N
< D

o, 6, ¢) = Hf(e' r,fﬁ.f\"
First we will expand the integrand,
3(‘
|
Pmet _ 1L - el
r \
Slnce — denotes the denva’twe in the direction of the out-

on

ward normal or of the s@.dlus we can consider this derivative
as differentiation \\Qt‘b respect to L. We then obtain from
Chapter 1V, Art 2\[or p < 1if

cos a\-' cos § cos '+ sin 8 sin & cos (¢ — &),
'\

1
? = Sﬁu(coc, a) — - Pyfcos a) ..+ Pnicos @)

Im-H

-~ afxd' by term-wise differentiation with respect to I, with
\ :,u = CO0S a,

1) (L
a(a,:)-a(a;L—Po(p)— 2Pi() & ~

(m + 1) Pap) iz
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Hence
0 P20 S em ot 0Paw 2T,
re m=p " i’
s0 that
2 2m+1 i

(10)  ulp,6,¢) = 2

m=g 4rfe ™

’ . '»\
[[s0.erPa as. "
; RQ
:.'\.. w .
The integral —” Sf¥', ¢") Pn(1)dS is a surface spherical hazionic,
S < .(:

and p’" ijPmdS ,\\
5

is a spherical harmonic of order m. E x1,'1.\(10) gives therefore

the desired expansion, [Itis valid 0t < J, or in the interior *

of the sphere, and uniformiy copvergent there.
For 5 = the series on the vight becomes

5 ke J j 16, &) Prlu)des
m=0 g :

(do <sin 0'dp'dy'; dS = Pdw)

7

where the integra&n is to be carried out over the unit sphere;
Itis called the“Laplace Series.” In the following paragraphs
we will St.‘ld:}f\ the conditions under which the expansion {10)-
s also yalid on the surface of the sphere. -~ . -
‘F’E\'W”ill now obtain an important consequence of .(10).
Lat\# itself be an arbitrary spherical harmonic of order #,
~ «’md therefore % = p"A (8, ¢) where A is an arbitrary surf‘gce
N\ sspherical harmonic. Then S0 : -

rau0,0) = 5 2L [0, )PaleS
=} bl s . - . .

The coefficients of like powers of p must agree ofl the two gxées
of this equation, so that :
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<

an “'A,,(e', 6 Puli)de = 0 for n % m,
and
1 A9 =21 ”An(s*, ) Pa)ds.

The orthogonality property (11) is a special case of (3”0 o}
Chapter 1V, Art. 6. \

The equation {(12) leads to further results., Frcm the
addition theorem, P,(cos @) can be expressed( &€ a linear
combination of the functions P.(cos6), P{cds®) cosve and
Pi(cos 6) sin v¢. Therefore from (12) we\obtam an expan-
sion for 4, (9, ¢) itself, R

(13) n(ﬂ #)= aiPa(cos 0) Ng
+ E P,,»(cos 6) {a, cos v¢ + B, sinve |,

vw‘l ’. N
where gq, 2, b, are constants Accordmgly, any surface spher-
ical harmonlc of orderm\can be represented as a linear homa-
geneous combinati 1\w1th constant coefficients of the above
21 + 1 functiongy, The above functions are evidently linearly
independent, ¢ Tkerefare there are exactly 2n -+ 1 linearly inde-
pendent spb<m:a£ harmonics of order n.

If . (ﬁ'f}?ﬁ') is a continuous single-valued function over the

““if:é;}here E, then ” o, N P,,('p) sin §'d6'de’ is certainly a
o E ‘
‘stirface spherical harmonic of order #. It follows from (12)
that the most general surface spherical harmonic can be Tepres
sented in this way.

f the harmonic function # is regular in the neigthUYhOOd
of a point, which we may choose as the origin O, then we may
choose 7 50 small that the sphere S of radius ! lies in the region
of regularity of #. Then % can be expanded in the form
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10% (b9 = 3 21 ”ua ) Pali)dS,
- e drE |

and this expansion is certainly valid for p < 1.

If the expansion of a harmonic function « is already given
in a uniformiy convergent series of sphencal harmonics of the
form =S b\

u(p, 0, 0) = 2 P A (8, ¢), O

valid in the interior of the sphere S of radius !, }et ¢ be any
positive number <I. Then, since the expanmoh‘ls valid for
p = ¢, we have for the determination of thé\4,.(8, ¢} (with

the use of (11} and (12)) AN
JJ wlc, 6, ¢ VP, (1)dw = G“JJA@(Gf-é;)’Pm(P)dW
£ E N b 4:?TCm
& = Am B; ]
N 2m 41 @ )
so that . N

Yck 1

Am H = ie” ’Pﬂ' ‘If’w‘
9, ¢ .iWL u(c, ¥, &) Pm(p)

N\
We find for #, thehore the expansion

S8 2 [ i

wherg &s an arbitrary positive constant </. If the f unction =
is a’lsu defined on .S and continuous on approaching S, or in
}}l‘ S, with the limiting value

’ lim w(c, 0, ¢') = f, &),
eyl

then on passing to the limit, which is easily shown to be
possible in every term, we obtain again the expansion (10).

If the series (10) is convergent for a point P of S, then the
®quation (10} holds for this point, by Abel’s theorem. Tf the
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series in (10} converges for every point of S, i.e. if the Laplace
series converges everywhere on S, then it represents every-
where on S the function (¢, 8, ¢) = f(0, ¢, and fis developable
in surface spherical harmonics. In the following paragraphs
we will investigate the development of a function in a Laplace
series independently of the Poisson integral. .

Exercise: Show that if u is regular in the space bqt&fé‘en\
two concentric spheres, one gets an expansion similag to that
of Chapter VIII, Art. 5. N

Art. 4. Expansion of an Arbitrary Functign™in Surface
Spherical Harmonics \ '

A funciion f(0, ¢) which is con!inuouyb}d stngle-valued on

the unit sphere E, with continuous ﬁrst‘ﬁk;-%vatives. may be ex-

panded in a Laplace series, and this qeiie‘{ 1s uniformly convergent

over E. That is, N
a4 fe,e= 3 2L ] j ', ) P (i),
m=0 41? 3 o

¥, , .
i = cos a =/e0s § cos 8+ sin f sin ¢ cos(¢ — ¢').
Of course, {6, ¢) is'ap arbitrary point on E.
The assumption of continuous first derivatives means that

. . . of .
the functu)&ibas continuous partial derivatwes% and é{;“'lth

& .
respecth\to’ every system of coordinates 8, ¢ of E. Wemay
the}'?!’f’f}e choose the system of 8, ¢ at liberty according to OUf
plirposes.

7N\

QO N To prove the above theorem, we first form the partial sufm
* Y{as in Fourier series)

2
Sn(ay ¢‘) = m2= m‘L: ! J'J f(e?) ¢P)Pm(COS IJ'-) diw
E

V]

= 4—1”” 1@, ¢") {éo (2m + 1)Pn(cos a)} do

E
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By using the refation
I
Polp) = kzﬂ (2n — 4k — 1) Py gp—y(u)

obtained in {15) of Chapter IV, Art. 2, the sum in the hra_ckei\
above may be given a simpler form. Evidently O\

(15) E (2m 4 1) Pul) = Pole) + Plirlw). A O

This 1dent1ty plays a similar role to that played by (18} of
Chapter VIIT in the proof of the convergencet}f ourier serles
It follows that

(16} 5a(8, @) = ‘_U Jo, 8" [P ({:Deu)+P,,+1(c05a}]
E

We can now (without hn‘utmg the generality of the investi-
gat;on) so choose the coordmate system that the point P: (8, ¢)
is the “north pole”; then ¥ = 0 and cos a = cos &, so that

$a(P)= —J‘ f@' ®') { Py(cost) + Pa(cost)} da,

or if we mtrodux the abbreviation

7 .i[}’ﬁ”" #)dg' = g(@) = b() [v =cos¥],

the \’ |
“5'. “(P) = J g8) {P P {cos 8+ P:,H_(cos__.ﬂ‘.')} sin ¢'dd’
:“\:." X
o - %r [} w0 {Pior+ Pr} oo

Hence, by integration by parts, -
. -

475,(PY = h(v) § Pn(v) 4+ Pasa(v) i .
- JH B () {P,,(z:)+..?“+1(w) } de
-1
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The integrated term on the right is evidently 2h(1). But from
(an,

2 2x
h(1) = L f(0, ¢")do' = f(P) L d¢’ = 2nf(P),

because f(0, ¢") means the value of £ at the “‘north pole” P afd™
is therefore independent of ¢’. Finally, from this we find)y

19 wB-iP= — & [ KO 1P+ P i
From (17) R4

He) = 3% - :i% ' sit: A sirll ef\ij .?ﬂ;ﬁ!) W
Now the derivative 6%3-{ is contin%lpﬁs:\c;;l E and therefore is
bounded, say ‘:j:’; ]
| F<g el < G -

for all points of E (that means: (@) V1 — ¢ is bounded).
From this it can bg\ﬁfoved that the integral (18) can be made
as small as desited in absolute value by taking = sufficiently
large. Letdde a number near 1, and write

\\zj\i?;ri';(s)P“(s)dv - J; +J~ +Jl

Now (remember | Pa(r) | < 1)
AN

} 1
W ” B (9) Pol(0)dy

1 dv ' o=l
<.|M-I"___—""_=_M'al’(;(.‘."}Si'I 1
e 1 — .02 1=¢

so that this can be made less than any positive e by ta‘king ¢
sufficiently near 1, and this uniformly in #. Then it3s also

true that
=t -
” 1-.---[<Marccosv] < €

pm =1
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Again,

. ¢ P |
J_c” @) Pty | < ML S

M 13
V=2 d-
M 2 A
2 - L\N
VIZe ™Y 2 LA

Sinl‘:e i "—1——-—-—-"-*-—*'- g ¢
J | Palv)| dv = 21/I Pr@dvpy *
—1 -1 M\\~

from the Schwarz inequality (Chapter VILEArt. 4), After ¢ -
has heen chosen, # can be chosen large gr\mgh so that this part
of the integral also has a value smallgf'\than ¢. Then wehave

l J OV NO¥

<

| Palv) | do
1 N\

=

X

< 3s,and likewisé of course
S

< 3¢,

. K\
|| et
80 that finally ‘ N '

[f,.g;) — f(P)] < gﬁi <e

Since the uppes, bovnd 3 in (19) holds for all points of E, the
choice of ¢ apd\inally of # holds uniformly over all E. Hence

the equati \Y
a a:'l\ef}.’ lim s.(P)=f(P)
' L :
hOId\meformly over E, completing the proof.

\M 5. Expansion in Legendre Polynomials o

\J  The problem of the expansion of an arbitrary ‘fun_thOﬂ in
a series of Legendre polynomials can now be...eaSﬂY'_tfea'Ed'
First we know from Chapter IV, Art. 6, thatif a function F ()
can be expanded in a uniformiy convergent series of I._.egendt?e
polynomials in the interval —1 = % = 1, the expansion must
have the form ' o
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=0

(20) Flu) = 3 2”’2“ Plte) [_1 Fi) Po(v)d.

For « = cos 8, » = cos @ this becomes

Flcos ) = 2’”2"'1_[ F(cos 8"} Pr(CoSB) P (cost’) sin8'ddt,

2\

and hence by the uée of (45) of Chapter IV, Ar. 7, .\’\

fe s
(21} Flcos ) = X 2m 4 1 JJ F{cos ¢’ )Pm(cea a)dw
LT ] 4
E m\
cos a = cos 6 cos &'+ sin # sin &' cos ¢, dm = cin #'d6'do.

But the expansmn {21) is a special cas ol\thc expansion {14},
in which f{#, ¢) is replaced by the quc}lon F{cos #) indepen-
dent of ¢. If the function F{x) has’a continuous derivative
in —1 =y =1, then F(cos 6‘} hés a continuous derivative
over the unit sphere; hence the ‘expansion (21) or {20)is justi-
fied. Hence: N\,

An arbitrary funcuan Which has a continuous first derivative
in the interval —1 <XB =< 1, may be expanded in o Legendre
polynomial series; \N}e series converges wniformly in the interval.

The subject! of expansion in a series of Legendre poly-
nomials can’aled be treated in other ways. We will merely
state here'Wi‘thout proof the result of W. H. Young:* If the
Legem@;: series of the function F(u) = F{cos 8} has the partial
sum s'\(cos #), and the Fourier series for sin # F(cos ) has the

~ pé.rhal sum o.{cos #), then lim {sn(cos 8y — M =0
\ nyco gin @
holds for —1 <% <1 or 0 < 6 < x. From this it follows
that if the function sin § F(cos ) satisfies such conditions that
it can be expanded in a Fourier series, then F(x) can be €X-
panded in a Legendre polynomial seriesin —1 < # < 1. This
- says, however, nothing about the end-points.

‘Comptes Rendus, vol. 165, “Sur les series de polynomes de Leger‘dm'_ﬂ



CHAPTER X

THE FREDHOLM THEORY OF INTEGRAL EQUATIONS
We have solved the boundary value problem only fo;,\bl@

~

circle and the sphere, and even for these very special reions

we have solved only the first boundary value problem.

Of the nuany methods which may be used to.5ofve these
problems in general, we will choose the Fredholm hf:et_hod of
integral equations, which is distinguished becatse of its ele-
gance and power, In this chapter we wiil.develop the funda-
mental results of the Fredholm theor;{'\’:. -

Art. 1. The Problem of Integral Bquations. |

An integral equation is a fu}ii:t%onal equation, in which the
unknown function appears urder the integral siga.

The most importanttypes of integral equations are

X

(A . SE;R("" DeE)dE = flx)

and b \

(B) 2otm) = j ' K, D) = ).
Re a

Here IQD'E\;:S) and f(x) are given, ¢(x) is the desired unknown
function) and X is a parameter.

R .f{fhe variables « and £ are limited to the real interval a to b,

~JThe functions K(x, £) and f{x) may take on complex values,
N\ in other words may be complex functions of real arguments,
The parameter A may also be complex. . !
The function K(x, £) is known as the kernel of the integra
equation. The equation (A), in which the unknown function

occurs only under the'integral sign, _is' known as anh?ﬂliziaai
equotion of the first kind. The equation (B), in whic _
259 o
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unknown function ¢(x) occurs both under the integral sign
and outside it, is an integral equation of the second kind. When
S(x) does not vanish identically in a = x = b, the equation (B)
is called a non-homogeneous equation, while for f(x)_l] it
becomes

© o0 [ Kwpowaz =0, (O
g N
which is called the corresponding homogeneous equatios.
The above integral equations are all linear With respect to
the unknown function ¢(x), since it enters cv"é}ywhere to the
first degree. (We will not consider nonclihear cquations.)
Such equations may be formed for two?, three-, or multi-
dimensional regions also. It is permis\si’ble that the region of
integration be a curved surface(for space) with proper

curvilinear coordinates to locate’pomts uniquely in the region.
The equation ™

.\

1
aw.3) = | [ o o 0s dn
2 Vix — 24 (y — n)*
(with R meaningi ‘Yegion of the plane), which defines the
logarithmic poténtial of a distribution, may be regarded as an
integral equation if u is given and p is the unknown. Thisis

an exampk 6.0f an integral equation of the first kind with the
kernel /¢

N log 1 .
AN Ve~ g4 (v ~ o
"\} Its solution is given by Poisson’s equation,
2
p{xr ¥ ) = = v—--u- .

2r

Similarly, the equation

u(x, v, Z) =‘—JJJ p(Er h r) dgdndg.
_ R Ve~ (y — 2+ (5 0
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may be regarded as an integral equation of the first kind,
with the kernci .

K(x!sz; £! 7?1 g‘) =

Va-pt+h-t6-1F

it has the solution
Vi A
plx,y,8) = ———- W
4x e\
In the following pages we will be concerned mestly with
integral equations of the second kind, for whic{lﬂle theory

was founded? by Fredholm.?

w\,/
Art. 2. The First Theorem of Fredholw(/>
We will now consider the functiorialequation for é(x),

g o) =\ || Kis, g0t = 1.

For the present we assume thé:f ¥(x) and K (x, £} are continu
for 6= x= b and for g= 2= b, a = ¢ = b respectively. It
will be possible to find );ecessary and sufficient conditions f?r
the existence and u@&uéness of a solution ¢(x), and to obtain
an explicit solution.

Followingﬂi’eaholm, we define forn =1,2,8,.. e
N K (x:, y») )

OUs

"\n
\V K(xy, y0) \_K(x;,yg). .

\:\ K(xg, 1) K, Ya) . - K (%3, ¥n)
(I)Kﬁllxﬂ|-..|xﬂ)z ......... A
:.\~:,~’.3’1,}'2,...,yn ....: ........ R

O K(xn, y1) K% Yoo -- K(#n, ¥}

\

*For later formulations of the theory see, for instance, Bmher’dAf!)f::
{roduction so the Study of Integral Equotions, Combridge, 1009 530
Heywood and Fréchet, L'squation de Fredholm et s¢5 “W,i”“, o der aﬁmp :
e mathimatique, Paris, 191; Courant-Hilbert, Methers

emalischen Physik, Bd. 1, in particular p. 128 f1., Berlin, 1924

See especially Az Math., vol. 27,



262 THE FREDHOLM THEORY CHAP. A

B b
2 CF}H J K(ii‘ﬁ:‘:::’ﬁ:)dgldsz...dsn,

Cu= 1; )
_ b x,&.s:.....z,) N
@ (T JJ . J S (;v, b, ga) R
Colx, ) = K(x, ¥). N

N/

The quantities C, and Ca(x, ) are always to bf‘;él%qsidered
as having the value zero when the index is ncgif'we.

Expanding the determinant K(x’ £ Bl E”) by ele-
I Elp\‘gk e g En
ments of the first line, we have 223

W

K
K er}_; EQ;-‘-.,}?“)= ~‘~‘3 (21152;---12,:11)
(y-.fh FARIIT Y R G VY
S —_ k '} Eli 521' . !Eﬂ)_
+&§1( 1) K(x, E‘%}'{f' IEI! LECRE ] Ek—-l: Ek—ai-ls ne oy Eﬂ

Divide by ! and inteQ'éte with respect to £y, . .., £a from e
to b, obtaining O

(4)

\C .
) Calz. 905 Co K, y)-—J K(x, £ Caslt, ») d&

- A\

for n = 0. D 2,..... For, when n = 0 we have simply
K{x, 3’ K(x, y). For » > 0, we note in addition to (2)
aﬂd&%\“ﬁhat the following identity holds for every k=1,2,..%

:..\'F.:" K(Ei, £, ... En)
\"'\\; w4 y,Eh PR tsk“‘l: Ek'l-i! ey Eﬂ
=(_l)k_1 K(Ek’ El" R Ek-—lr £k+1l R E"’)

3’1 Elv ey Ek—-ly Ek+1v RO !gl’l
Hence

I s

bk Bk

dEdgs. . . . Gkn
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_—l . 9 TR L RN TOR Y TE RO ’én)
o on! J’K(x, gk)d&J. ' J. K(}'p Enbyey Bt bbb

dtr. . . dEerdlpr. . . dEy

It

1
-1 jK(x' £) Co(t 3)dEs

It

1 SR,
- J’K(xl E)Cn—l(fv )ds' ;:\.} .

Multiply both sides of the identity (5), Just proved by
{~N)" and sum; letting )} 3

{6) Dxy= E Ca( =M% 0\
semi)

and \\

) D(ﬁ ) 2 (ﬂx)*cﬂ(x, ),

this gives a '.

ad

§ (=N)"Calx, y),:——‘i'{'(x, ¥) g (=N)"Cs .
n=0 5 Xo =0 .
+ "5&{ 3 (3G 9} Ko ) 6

or

;
(8) D(y\,”) K(x, DY+ 2 K(x, é)D(y )

We Qﬂl shortly prove that both the senes (6) and (7) are
aEwa;py convergent, hence that D(\) and g l) are niegral
\ﬁ)ﬂdwm of X, The function D(2) is called the “determinant’”

of the kernel K (x, ¥), and D( ) its “mmar_dete:rmm_n:i of the

First order :
—_— e
nfinit
*An analytic function which is regular everywhere except fT:slis 00113-(
is called an integral function.” [ts expansion ‘_‘_‘ a power ser) .
. Yergent for every finite value of its argument.: - i
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These names are based on the fact that D(A) plays a similar
part in the solution of (I} to that played by the determinant
of the coefficients in the solution of linear algebraic equations.

Similarly, D(;:; ?\) plays a part similar to that played by the

minors of the determinant in the solution of algebrai(,\h\‘lear
equations by Cramer’s rule. O

We must now distinguish two cases, dependimpioh whether
the determinant D(A) is zero or different {rdin'zero for the
value of the parameter A for which we wish}to solve (I}; in
this-article we will consider the case whele

m\J
® DN 0. (O
Divide (8) by D{}) and let N/

D *, 7\)
10 =
(10) K(xy) DOy
"then h

P4\

]
(11) K, y;h)ff?}’[ K(x, HK(E, y; NdE = K(x, ).

The function K(x, y; ) is known as the "‘resolving kernel”
or “resol@rem”'bf the given kernel K{x, y)}, because (I) may be
solved opits use,

Evidently K(x, y; \), being the quotient of two integ‘-_’al

{ gm"s ions, is a meromorphic function of X, or has no singularities
\.fqn‘tcept poles, in the entire complex A-plane.

The equation (11) may be regarded as a special integral
equation of the second kind. It is obtained from (I) by
placing the kernel K(x, ) itself in place of f(x) (hence another
variable ¥ enters as a parameter). The part of unknown
function ¢(x) here is played by the resolvent kernel K(x, ¥i M-

{f the determinant K(x’ o doyeonnen ! s“) be expanded -

v, El, Ez, ....... ' En

by elements of the first column instead of the first line, and
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the same methods be followed through, a relation similar to (4)
isobtained ; and from this, instead of (8) and (11}, theequations

& o’ m) — K(x, DO+ A f D( : x)K(s, 3) d

and , N\
11 Kx, »; M) —~ j K(x, £&; MK, y)de = K(x, y)«\\‘

Before solving the integral equation (I) by the ald of the
resolvent kernel, we will establish the convergence 5§ the series
(6) and (7). The convergence proof depends ongt\he Hadamard
theorem on determinants {see Art. 7). .

By this theorem, the determinant Y,

satisfies the {nequality N
4] LFV/
if all the elements satigfjnthe inequality la,,] < k. The ele-

‘ments may be complexy
Let M he a bou@d to the absolute value of K, so that

O Kenl<M
'fora‘:\:‘:b\af‘{yﬂb then from {2}, forn = 1,2,3, ...,

|c,.|\ M,.\/—J' J'dn M-V

!
Henﬁe the series (6) is dominated by the series
m~\J nih - 4% P Y
\‘;"‘ 1+ZM(b RN = Xithn,
\ =l !

80 that it is sufficient to prove the convergence of this series.
Now

Sy M(b—a) | /G F D _ M~ ) *"‘1/(1+§)".

Iy w41 n"
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But since

(1 +1)"+ e = 2718 +,

it follows that 22+ 5 0 for every A and the series in question
#n

converges by the ratio test, no matter what value X may havel
The proof of the convergence of the series 5 ( —A)*C, (x, )\15
made in the same manner.

We claim now that the integral equation (I} h’ls tme and
only one solution ¢(x), given by

(11) ()= f(x)+ A K(x. £ NS

where K(x ¥; A} is the resolvent deﬁned\by (10).

It is necessary to prove that any\Sc)lutlon of (I) must
have the form (II}, and that conversely the function defined
by (I1) is always a solution of (1),

First, let ¢(x) be a solutmn ‘of (I); then multiplying by

the resolvent, 1ntegrat1ngaud interchanging the integration
variables, we find %

oo, & ac v [ e 9. & Dot
A = [ roKe, 6 v
Multiply thi&by A and add to (I), which gives

L&Y [ K nso

2 8
o\

A = e[ K e e - [ K 000

e\ W

O

b [b
3 [ [ K Ko, 1) 0t
2]

[ ke e ke s |
= o) ﬂ
by using (11%).
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Conversely, if we substitute (11} in (I}, we have
b
9 +2] K aniwa - Keoron
—R’J. j Kx K, y_l)f(y)didy «

=f(x) -HJ- f(y)dy{K(x.y;h) ~K(%5 _\o'{\
b s N
_ aL K (5 DK &) ds} |
= flx) L _ W\~

by using (11), which completes the proof. <

Hence we have proved the first theorém of Fredholm:

When A is not ¢ zero of D(A}, tke jﬂ}egmt equation (I} kas '
one and only one solution, which is daven by (ID).

It is evident that ¢(x) is continuous, since f(x) and X (x, ¥)
were assumed continuous, and’ t%le continuity of the resolvent
follows. e
By means of an mvestlgatlon entlrely similar to that above,
it may be shown th;kt the “associat " integral equation

N\ b
(1) N.;Rx)—xj K (& )9 (0)dk = gs),

under the hgf;%éhesis

DOV 5 0,
has &%lque solution given by ‘
»«ﬁ!“") o) = g+ Km0 g

} .
It may be easily shown that the associated kernels K(x, ¥)
and K (y, «) have the same determinant D(\) (see also Art. 4).

Art, 3. The Minor Determinants of D(A)

In order to be able to consider the treatment of the case -
DM =0, it is necessary to ebtain, in addition to D(A) and
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D x; )\), certain other entire functions of A which are called

“minors of higher order”
between these and J()\).
From the definttions (2) and (3) above,

b
ﬂcn = J Cn—l (E! E)dEJ

of D{}), as well as the relations

p \:\'
:.\ :
so that W/
2 n(-vica= 3 [ (oo g,é) 2
or 3'
b
12) £%D='1[DG‘LQ€
d\ a £ M
In order to define the minors of:k;ig}her order, et
.f c (,;h . xm) _‘;{.]‘b J'b
n ¥ o W hl ’ a :
x].)x‘ﬁl' L] lmeEIIEZI LR vgﬂ)
K7 afq. . . kns
(13) * "’Qh }'2.- v . tym;E‘ll E?: LR lEﬂ. E
cﬂ(xh xz’,\i.".’f x,..) _x (x;. X2y ,xm) _
y&ﬁ?ﬂ"'!ym yllyﬂu“"rym
Then ¢
14 ?‘%;.xz,....xm‘ - Gl‘xg',,,.,xm)
(14) vy x) E‘.u( AN Ch e Im

is zk‘bnmor of the m-th order, m = 1,2, 3,.

N By the aid of the Hadamard theorem, it can be proved
\ “\'that the series (14) converges for all . Moreover,

s & D()\)

m Elrsﬂ,‘-'!sm
1 L-”LD(EM&-—-

s km

which contains (12) as a special case for m = 1.

7\) ak,. . .dEm

" "The above functions Cy (%, ¥) are now to be designated by Cﬂ(;)‘
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By developing the determinant
K(xhlxﬂ. “ ey xm; El; ey Eﬂ)
3 P & TR Jymreb'-' !En

by the elements of the first line, we get the following general-{\

ization of {4), A
\ -
K(xll""xMIglv"-rEn) ;\“,
yi:-u;}’m.fh---.fu i : “:N,'s I
o X bt ba ¢O '
= K(xhj'ﬂK(xh % ) fn
(16) J’h---d’m,fh---:gu w

— xg,..-pxm;.g\zz""f" .
+(—“—1) 1K(x1‘}'m)K( '.',]ym'\i;\‘éh..-ugﬁ)

xg,...,xw El,gﬂr'-:lgﬁ ).__I__’__'_

+ ( _l)mK (xlr 21) K(y 1, _s W ym—‘l! Yms E?: ) 'E”

Division by #! and mtegratlcin with respect to £i, Eﬂ' ~eeo b
gives the identity : B

& .
Cﬂ(xl’ R 2 . K(xl,yl}Cn(m,:::;:;:)+

-

Flrvavag y
e, Xty ovsrr¥m
(n :"‘\,‘ 4+ (= 1™ 1K (%1, V) Cn(), bhoven ,-y.;-l) .
9.\l .
i»\I. h _ E'x“"""x_m)df
’\“a _JaK(xl'E)Cﬂ—l(ylryﬁr"'"y'“ .
R\ : '
. 1 xz, ) = .-
fa}"ﬂ =1,2,3,.... However, since C‘"()‘u,'yz, - 'ym) .0

thls identity is also valid forn = 0, when it gives the expansion
%1 Xm
by elements of the first line of K{ .| L ,ym)

Multiplying the equations { 17) bY (—'?\)"_ and summing, wé

find the generalization of (8),
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D(x‘h x?: L] sxl'ﬂ }\)
yhyh' . -«ym

=K(x1,y:)D(x2""'x"‘:h)

Yooy ¥m
(18) ;
+ (“l)m*]K (xl’ ym)D (f’g, P e : h) . f\~..\
Lo Yme1 O
Erxﬂ;---Jxm ) t‘
D o
+ XJ‘ K(xh E) (yl‘ yz' e ey ym ,E\.

Q7N
\

Art. 4. The Second Thecrem of Fredho@
From the first Fredholm tht,ore 1 1t\19 evident that the
homogeneous equation

a9) ey K(gg,zg’sa&(z)ds =0,

in which f(x) =0, has nq.fgé)‘l;.ltion except the trivial one
¢(x)==0, when D)) 0z

We now make th;e:’hypothesis that
(20) W Dpy=
and will prg{rigl"’{hat in this case (19) posscsses non-trivial
solutions,,. \

Ftté“)etc be a simple zero of D(A). Then D ( ) cannot

v&m,}h identically in x and y; for then we would have D E )

”

\\ *‘ 0 identically in £,'so that from (12), D'{¢) = 0, which is im-
possible when ¢ is a simple zero of D).

Since D{c) = 0, equation (8) becomes

(1) D(; ; c) - ch(x, 6D (ﬁ c)d.f -0

Choose for (x,y)a number pair {51, y1) such that D (;11 ; 6) # 0,
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which is possible since D (; ; c) is not identically zero. Then
(21) shows that D (;’ ; c) with fixed y,isasolution of (19) which -
't .

does not vanish identically.
It D(; ; c) vanishes identically, then from (12) D’(¢) =9;

but the converse of thisis not true. We will now make, i{istea'd '

of the assumption that ¢ is a simple zero of D(LL thé more

general hypothesis that D{c) = 0 while D(y : % not identi-

Q"

cally zero; then we find as before that K(x) (:1, )m a

solution of (19). In this case, cisas Ies{b;slmplezeroofb(k)

We will now generalize the discysgion, by assuming that for

A = ¢, pot merely D()), but also aIIthe minor determinants to
order m — 1 vanish 1dent1cally in their variables, while the

m-th order minor D (xl‘ Xy s Km does ot vanish ideti~

Ny 3’9. ----- + ¥m

tically.  From (15) it follows that D’(c), . . . .. . DD () are

zero, or ¢ is at least ‘af m-fold zero of D( )
The identity, (}8 then becomes

(22) D@*'?---'xm;)
AP

:n\.‘. . E‘ Kyoanr xm; )dé: 0’
&F iy j K(xi, 9D (yl_.yx, Cmie)

:O{, writing x in place of x,

\‘3("22*) D(xlxh ----rxm_c)

TR % £ tas oo ) = 0.
R ARt dE
— J K(x, 9D (y,, ..... Yn’

1

i TR y Vm

Hence D (x, ety 5) is a non-trivial s_t?l_u__tion-o'f {19), m
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CASE X2y . ...y Xms VIr .+ - -4 ¥m are given such values that the
function is not identically zero.

In a similar mananer, we find in general m solutions

D(;h' T 5 T A o Xm : C) £\
IR e y Vin
fork =1,2,,..,m, since each of the numbcr-p: urs(y )can

be put in the first place in the expansion of the determmant
Following Fredholm, we write these solutions m\ﬂm form

o

D (xly e Xk—1, X, xk+l} vy X E f-):
@) pulw)= P L k=12,
D Xl e o ) Xk1y Xk xk-}—l! 5\1 X ¢
TR :‘.'.". y ym

The denominator is mdepe clent of x and hence constant,
and from any solution of (19) others may be obtained by
multiplying or dividing byta constant.

Evidently <

¢k(x;)»\=1 fork =1,2,...
We will next prove that the m solutions are linearly inde-

pendent. We riote that by using (23) and the relation
¢i{xy) = l\(ZZ) can be written

O 1 cJ- K (e, Bu(6)dE =

) :“\...”,I’h general,
Vey  [kepei=1 k=12...m

In (16), let x,= x,, so that the determinant on the left
takes the form

K(x2| X2y X3y o0 X El; R Eﬂ
Y1 V2o Vo oo v Ve E1y + v o £a
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and accordingly vanishes identically, since the determinant _
~has two lines alike. By expansions which are analogous to -
those above, we get instead of (22**) the equation '

3
J K(xz, Bér(8)dt = 0.

In general, QN
AN

) fK(x,, Dot =0, 75 C

Now if ¢, @, ... were linearly dependent, that is, 1f there
existed a relation "‘. .
erdy(x) + capal) +. . +cm¢m\(x) 0

with constant coefficients, then 1t Qeuld follow ' that for
E=1,2.. . m, |

—

CI'L K(Ik, E)le(E)dE + ----- +“CMJ. K(xkl E)¢m(£)d£ = 0

and hence on account of (24) and (25),

¢ _\n R=12...,m
this completes th"\\pl'oof that the funct;ons (23) are lmearIY
independent, \

Finally, s swill show that every solution of (19) s iner
combmat R with constant coefficients of the functions
o1}, . 2% ¢m{x). (The converse theorem that such a linear
comblﬁxtlon is a solution is trivial, of course, in wngequence
of the linear homogeneous character of the equation.) . - 0

m‘“\ Let (x) be any solution of (I) (later we will setf(x)— ;

\ Jthe
jL(x Do (®)dg— af LG K G y)¢(y>dédy=‘ f L(x 010

1
where L(x, £) is any continuous functlon of x and ‘E Muitlp y
this equation by A and add it to (I, obtaining
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b 1
@) o)~ | 6x, De@it = 10 + 1 [ Lie, oo

an integral equation with the kernel

@) Gla8) = K(s, §) = Bs. ) +) | L0, 90K, 0.

(This equation was used in Art. 2 with Lix, £) = K(x, §; M aud
G (x, £)=0). We now let o\

Q
D(xl 'El:-‘nrgn 'C) :N}"
@) Ly -ttt S8
D(Elv'-'-r-En_() "";}
T“-I L nﬂ ' . N\
Then by expanding x\\\”
D(x| El! L e{l”..é\)
E) W1y - N a?,n:,‘
similarly to (18), we get the equiation
1 N°
G, ) = 2\
(x E) D(El; Ezw- A 1 En. C)
7?121..::':\° .- Thl‘
R R A
(29) \”.:x’w: + .....
S o G V5 < s)D(g" BN :f)
}..\:. My =m0 0 m v + Un .

N/

R?.f;l\embering that every solution of (I) must satisfy (26), and

chence every solution of (19) must satisfy

b
ox) = Lc(x. Dee)dt,

we insert the expression (29) for G, and noting the equations

(23), we see that we have obtained ¢(x) as a linear combi-
nation of the ¢,(x).

On investigating. the equation
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)
19" W = \| K& 9@ =0,
associated with (19), under the same hypotheses, it is found,
that this likewise has m linearly independent solutions O
D(il,xx x ..... ,im;c) O
Ty vo s o g XE—1 Xy Kpp 1y« ooy Loy - 6\
(30) ;.\"/k(x) = LY N/
D 1, ................. ,}'m;c) (5.:‘.
P y Xm ON y

and that the general solution is a linear combigation of these.
For if we designate the quantities belongitg'to the associ-
ated kernel K (£, x) by bars, then we have,obviously -

B x,,) = K(y}e'-';\\"’y”).
- AVL oy e ’xé‘,t...,xﬁ .

Cr= Ca, En,(ag,f:;\})'; Caly, %);

5. o022 pl?
DNy = ?gg)_ D(y’ )\)ﬂ D(x ; 1), .
and in general \\ . |
_ x:.,.}:..:.’-xm_ =Dy1"”"y’";?\),
D(y'l,\”‘}"'!ym'h) (xh-'-'!xm
from which’she solutions (30) follew. -
We’\&u} collect the results of this article into the following
thﬁgnem: ' .
~"\',ff X = ¢ is a zero of the determinant D), and if the minor

<‘s§eﬁérms’nanzs of orders 1,2, . .. m~—~1vanish ideniically for; =,
while that of order m does not, then z};g_kmnageneo-us equalions

lx) — 'J-i5 K(x, £)¢{_£)'d£ =0,

and hence

therefore

b
Y(w) — j K6 W@dE = 0,

each possess exactly m linearly independent solutions $x(z) and
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Yilx) which are given by (28) or (30) respectively.  The most
general solutions of the ubove equations are Mnear combinations
aof these functions ¢p(x) or Yilx).
In particular, we have the second Fredholm theorem:
If N = ¢ is a root of the m-th order of the equation D(?\) =
then the homogeneous equation O\
'\

06| K poa =0\

has at least one and at most m linear independenit Solutions.

The roots of the equation D(A) = 0 aré\palled eigen-values,
and the corresponding solutions of the llemogeneous integral
equation are the eigen-functions for thetkernel K{x, £). Any
root ¢ of D(A) = 0 can have ouly»aufinite multiplicity, since
D()) is an integral function. Accordmgly, there can only be
a finite number of eigen- fum‘:ﬁons corresponding to any one
eigen-value, Moreover, the kernel may not have any cigen-
values. Only for symmetﬂc kernels (for which K(x, y)=
K(y, x)) has it been proved in general that the equation
D)= 0 must ‘@:nétleast one root; however, we cannot
go into this sub,] any deeper

Art, 5. The Thn-d Theorem of Fredholm

VK Will now investigate again the non-homogeneous equa-
tion™\

B ¢(x)—cLK(x, (Bt = f)

A under the assumption that ¢ is a zero of (A}, and that the
minor determinants of orders 1,2, . . . 7 — 1 vanish identically
for X = ¢, but that the minor of order m does not vanish
identically.

We will show first that (31) in general has no solution, that
is, for arbitrary choice of the function f(x); and moreover,

N
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that certain conditions on f{x} are necessary and sefficient for

the existence of a sotution.

First, let ¢(x) be a solution of (31); then on multrplymg

with ¢, (x} (sec {30)) and integrating, we find
Lf(x)yh(x)dx =J B{x)pn(%) dx-cHK(x E)«ﬁ(&‘)%(x)dxd&

- [ staartunin - K6 xm{s)d&)} So

from equation (19%).

'S ~\.'
Hence the m conditions “\

{32) J FE)n(x)dx =0, (& = 1,250 m)

are necessary conditions which f(x) mu\t satisfy if (31) is to

have a solution. That is, f{x) must Be orthogonal to each of S

the yu(x).
These m conditions are alsci Suﬂ‘icrent for if theY are 33“3"
fied then \

@) e=sx &

6:,“?\ JbD(x: Elr . ---:Em )f(y)dy -
+ (El; \“|Em ) o 3—'.111,-—-—'11‘::: .
=
7“,! Cowny Mm o
is a solution(of (31). |
In Ol‘delkto see this, substitute this function for ¢ in (31), .

: wh'.ch \}VP_s, after a simple reduction,

\%
; r

L PIIIRY/ ¥

~ [ kw0 {0

-+
D(Ell--..,Em_c

Myors s M

E2R e L N

N\

\N\:t\fﬁ D(El"""*’"- ‘) [o2Goaii )f(y)dy |
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This equation leads, if we expa.nd as in {18},

xlEl!""!Eﬂl_ - El--—--nEm_
D EECE R )

— K(x‘ 171) D(El; ------- ' Em . C)
YNy ey N
. O\
7'\ N
m "Elu : -s:\-'\-.- - Em )
-1)"K y Mm D S} H
(1K DS e
b \
+ 6_[ K{x, §) D'EE‘.E“ B e’":C)dE.
a "': 1/} P )
and use the definition equations {30Y, to an equation of the
form N\ -

° O
,[af(y) {al’l&l(y) +:% : A . +a o (3’)} dy =0,

where the aj are free®f y. But this equation is satisfied,
because f is orthoggm’&‘to all the ¢4, and hence-® is a solution
of (31). - A\

Having foufid that a solution exists under the hypotheses
(32), we must/note that this is not the only solution. On
account @i the linear character of the equation (31), we can
add ary)linear combination of solutions of the corresponding
homtogeneous equation, and still have a solution. Hence the

_mgst general solution of (31) is of the form

ey #) = 2)+ B aale).

We can now state the third Fredholm theorem:

If ¢ is a root of the equation D(\) = 0, then for the existence
of a solution of the non-homogeneous equation (31) i s MECEsSary
and sufficient that f(x) be orthogonal to all the solutions ¥ (x)
of the associated homogeneous equation; if these conditions are
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fulfilled, then the general solution of (31) is found by udding to

the solution'd defined by (33) a linear combination of the solutions
of the corres punding homogeneous equation. ' '

It is evident that the Fredholm theorems on linear integral
equations of the second kind show a very complete analogy
with the theory of linear equations in algebra, when the

number of algebraic equations is equal to the numbér of

g W

unknows.

The Frodholm theorems lead immediately to théif’(.i_ilowing' _

Q!

tworem, which we will use in the solution of béundary value

problenis:
If the howrageneous equation AN

3 \’
o)~ N[ Kir, Dz = 0
has no solution, then the nan—kqﬁgﬁge;waas eguation.
PN S
o(x) — N Ry, o(H)dt = f(x) -

has @ unique solution.. \

If the komogeue{‘us’ equabi .
pendent solutions o, . . . Gy bhen the associaled homogencous
equation has likewise m linearly independent solutions ¥u ey
¥m- The notisfiomogeneous equation in this case has a solution if
and only §f)f(x) is orthogonal to oll the solutions Y, and 4f this
cmdz'z;}\;@ is satisfied, the general solufion comigins ﬂfbﬂ?’fl?‘?"
consianls. '
¢\ Forif the homogeneous equation has

“then D) = 0, from which the first part o ;
On the other hand, if the homogeneous equation 139.5 exactly
- m independent solutions, then D(A) and all th‘.a minor deter-
Minants doewn to the order m — 1 vanish identicaily, but nof.
the one of order m, from which the second pﬂl‘t of the theﬂl'em
follows, (We have used here the converse of the theorem O

page 275, which is obviously true also.} _

N/

no non-trivial solution,

on has exacily m linearly inde-

f this theorem follows.
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Art. 6. The Iterated Kernels
'~ We found in Art. 2 that the resolvent,

;)
Kx,y;8) = ——~—
A T A
¢\
is an analytic function of the complex parameter X, and indeed
is a meromorphic function. Since the denominator D{)\) does

not vanish for A = 0 (for we have D{(0) = 1), the resolvent is
regular near the origin and can be expanded in- 3\130“ er series

(38) K, 3 ?\)"* K"*‘(ﬂc IR,

in the neighbourhood of A = 0 This s}nes converges in the
maximum circle which contains no, singular point of K, that s,
in the largest circle which contamsno zero of D(3). Hence, i
co is the eigen-value of smallest ‘absolute value, then |cq| is the
radius of convergence. Ifvthe kernel K(x, y) has no eigen-
values, then the resolvent K(x, ¥; \) is itself an entire function.
_ The coefficients of the power series, which have been desig-

nated by K*(x, y)\}nay be found by recursion formulas ob-
tained by substititing (35) in (11) and equating coefficients of
like powers 8% For the first function we have

(36) O K'(x 3)= K@ y:0)= K(x, 5).
The \s%éeeding functions are

W) b
O K¥x, y) = LK(x. BK (& ydE,
b
K'x, ) = L Kix, ) K*E, y)dt,
and in general

| ®7) Krtny) = —[ZK(’C! HE™§ y)dE, (m=1,2, .. )-
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It is easily shown that
b

Kz, 5) =j ...J”m, EVK (£, £o)ee o K (B )8 . O,

a

¥ b -
87 E™(, ) =J- K™, K" (£, y)dt, Q
and in particular C “\

b
Kon(x, y) = j Ke(r, 9K(6, ) ¢\

p
N
N/

The functions K"(x, ¥) are called the iterated kexnélds. They
are of importance in the extension of the Fredfielin theory to

non-bounded kernels (see Art. 8). RS
o:'\
g
Art. 7. Proof of Hadamard’s Theorem )
Given the determinant o\
@1t iz . ..,.:::‘G.“Gm
(38) A Ll -‘.:E'v. [ars],
Guy Ende - v v Cun
let \{

B9) o= 3 JagPe ol o .t el
=1 £

Then Hadama;dféf£heorem is that
(40) D7 AP=c. ..o
To provethis, introduce the conjugate determinant 4 whose
elementeNd, , are the complex conjugates of the corresponding

elements of 4, and the quantities
\M\“" Y E _ Ore (?’ s=19 n)
Ve Ve -
- and their determinants L
B= [b”], B= ibr 8]-

Then we have to prove that
(40%) |Blt=BB=1.
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From (39) we obtain
(39%) 2 by bri=1, {r=1,2...,n).

i=1

Let us find the maximum value of BE, as a function of{®
brs, bre, subject to the conditions (39*). We express thisun
terms of real variables by writing N ¢

bra= Xrst t¥rs ("'}«:
_ bra = Xys— £yra- .“‘.’\.'\.’
Then the function BB is to be made a maxifain as a function
of the real variables x.3, ¥.,, which are not’independent but
subject to the conditions (39*). By tHe‘Lagrange multiplier
method, this is equivalent to making the function

" o\ o " .

B.B - II 2 b)sbla;‘:’- . — ln 2 busbns

sm= ,v s=1
a maximum, where the Lagrange multipliers /. are constants
and the variables x,,, ¥4 are treated as if they were all inde-
pendent. Hence we(8t each partial derivative cqual to zero,
and since \

B B _ =
’\'3“ = B,,, aB = Brn
N axre (')x”
and \*\"
.\o\\sn' daB = iB.,, oB - 'iErsv
™ ayrs ay!‘-‘l

AN _ B -
~wihere B,, and B,; are the cofactors of b,, and 3,; in B and B,
we find

BB, +BB:s= 2L.x,,,

_iBEN—F »;'BB”% 2 s, {r,s =1, 20 7).
From these, we find

BB” = I’r(xrs_"_ iyrs) = l,-b_rs-
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Multiplying by b, and summing, this gives

B. 2 Brabrs_—' Ir Z brsugrs'
5wl gml
or from (39%)

BB = 1. N

Hence the Lagrange multipliers are all equal, and. \ \T
3 _E&’l__B__". .(”«\“
1, B D
By the rule for multiplication of determinantgat) .
!,\&,‘ .0y o
_ " ) o Bl jo...0 B
BB=[Z b”b“] =[E_B_'_]‘= = 1.
s=1 B i IS R :
",’“ N/ 00'.-1
Hence the maximum value of BB is 1, which establishes (40%)

and hence the inequality (40 (The minimum value :Of BB

is 0.) . - e
If the elements ofsi

dition \!

be determinant 4 ‘all satisfy the con-
RS ol <b
then from 393 7 ¢v< nk?, and hence from -'(40):_, we _gqf:_t_.the
inequality dded in Art. 2, S
.‘s'\ 3 & iA|2< nnkﬁn_
'"‘Af}‘ 8. Xernels which are not Bounded o
3 i - oed when the ker
The Fredholm theorems remain unchanged whe: -
nels are not required to be continuous, but are Ime_re_ly 511}1:;‘; e
bounded and integrable. No change is nﬁgd?ﬁl any‘vi(x 9
the proofs. The situation is different whent th? .kell;li}é - ’t ﬁ’e
is supposed integrable but not bounded; for it t _Sﬂing e
auxiliary functions Ca, Cn(%: y) may lose th\?jr mea g (22
bE]ow)_ S o
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But in the solution of boundary value problems we will
need to use precisely this case where the kernel is infegrable
though not bounded. Hence we need to investigate under
what hypotheses the Fredholm theorems are still valid for
unbounded kernels. We will assume that the n-th iteraled kernel
K™(x, y) remains bounded, for fixed n. Then all the higher
iterated kernels K1, ete., are bounded. The Fredholﬁi theo-
rems are valid for an mtegral equation with kerneh K. The
determinant and the minor determinants for th\Is kernel can

be formed, and will be designated by Dj (Xiﬁnd D, (;:?\);

they are entire functions of A. \\

The resolvent of K* is \

)..' D!; (; H h)

(41 Ko(e,y A= —2 2,

) (e, ¥3 AN DY
or
(42) K,(x, N = K"(x ¥) + MM, v} +

™ +AKEOn, 5) +..

where K*, K2, . are iterated kernels. The last form is valid
only in ascéfiain neighbourhood of A = 0, while the first is
valid ovea;the entire A-plane.

Qe\resolvent K(x, y ; M) of the original kernel K{x, y) is

atﬁrst not defined, since D(A) and D(y ; )\) are not defined for

(an unbounded kernel. In the applications, it is generally the

case that K{x, v} becomes infinite for y = x, or in other words
on the diagonal passing through the origin of the square
e =x=b,a=y =<b; then the coefficients C, and C,(x, )
defined by (2) and (3) lose their meaning, because their defi-
nitions contain the term K(£,£). Inorder to obtaina definition
of the resolvent kernel K(x, v; 2) for a non-bounded kernel, we
will first obtain another form of ‘the resolvent kernel K for 2
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bounded kernel K, a form which will retain its meaning when

K is non-bounded bhut integrable and K™ is bounded.
From (42}, fors =1, 2,. n—1, _
[ 5w oKz 3 0t = Koo, ) A ~

+ MEPH(, ) 4. o
hence, conﬂm::m, this with
K(x, s 1 M) = K(x, y)+ MKz, 3)+ MK(x, y)+
we find
K, yi)) = K{x, y) + MKz, 9) +-.
+ AT, v} 4 AT ’Kn(x. y. A}
[ (Ko + MRE .

+qvwvﬁxnm&ydﬂ&

ot ¥ ;
.~.\\’

For brevity, let *
(43) S(x,y:%) =Kz, y)v—}-m(x,wr +h""’K"“(x»?%
then
(44) K(x,y;N\) = S(x,y M+ A K lx, v A

+ h"'[. S(x, E, X)Ku(a J’- A ) dE

Now thi§' representatlon of the resotvent K(x, ¥ M) fotl‘ -
bounded Jge}nels K (x, ) retains a meaning in our more gene;a)
case of ahunbounded kernel. Inserting in (44) for Ka(x, thoﬁ
the éfcpressmn (42), where \* is to replace X, we obtan:ha e
ol valid in a certain neighbourhood of A = 0. Butthe R

.\w&UM®m mgﬂﬁ'
(449 Kz 310 = S 3N 37505

b o G : hﬂ)d}-i:
+mﬂJ’aS(x,£:>}'—ﬂ§-§_ "
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and this representation is valid for all values of N except the
zeros of D,(\"). It is evident that K(x, ¥ ; \) is again the
quotient of two entire functions, of which the dencminator
is DA™ '

(44**) K(x, v\ = . Q
b £

D083 13 D,(5 )1 s (£ oot

Da(™) '

Now that this expression for the resolvellth}s\beerx found,
the Fredholm theorems may be applied t& diltr more general
case. Hence for example, when A is nqtﬁa\zaro of D,{A"), the
non-homogeneous integral equationslas a unique solution
which is still given by (II). Itis merely necessary to substitute
{44} for K(x, y ; A). Also the»o;her theorems of Fredholm
remain valid. We will not gpﬁslder them in detail.

Remark: The Fredh(ﬂ.r"n’ theorems concerning integral
equations of the second kind remain valid when x and » are
interpreted as pomts\m a finite region of more than one
dimension. The \Q\tegrals become double, triple, or multiple.



CHAPTER XI

GENERAL SOLUTION OF THE BOUNDARY VALUE PROBLEMS . {\

Art. 1. Reduction to Integral Equations --;\ D
In this chapter we will give the general solutio;i.iqf\’the'
boundary value problems formulated in Chapter W1’ We
will transform these problems to integral equatiofng, and dis-
cuss the resulting equations. \ : e _
First consider the Dirichlet problem qu\\:he interior region .
¥ bounded by the closed surface S, whichi we will assume to -
have a continuous curvature. In thig)exterior problem, S was
supposed Lo consist of several paxtsybut for the interior problem
the bounding surface S is assiimed to be a single surface, as
this is no restriction on genérality.' Now.a harmonic function
4 is sought, regular in  and continuous in V + S and satis-
fying the boundary, éondition ' o '
1) » y_=fonS,

N

(The symbols 4 #-

where f is a CQIitihuous function on . : _
Chapter V. Art: 5 (after

A Bu_ D . .
4 -/have the same meantngas n

ay
equath\{ (16)) and Art. 6.}

Sbet .
<‘f~\’ a(l) , L ( b .) B

} cos(r, o dS,

® up =0 dS@='JJg(Q)T _ |

. . o : tial due t¢
which is equivalent to assuming that # ls.t};ikpct);eg::i::rmine o |
a double layer on S of moment & Let us & ‘determination is

so that the condition (1) is fulfilled.. 1f thus SR '

18ee Chapter VII, Art. 3.
' 287
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possible, then it is evident that (2) is the solution of the
problem. For, the function # defined by (2) clearly is a regular
harinonic function in V, and if we complete the definition of »
by ascribing it the value f on .S, then from (1) it is continuous
in ¥V + 5. Now we have shown? that on approaching a point &
of § from the interior, the function defined by (2) satisfieS\the
condition u_ = u(s)— 2wu(s). Hence the moment < mst
satisfy the equation

@) u_= —2muls) + H (@) e 4 —'f(s)
5

Q:
Let O
@ K(s, @) = 1 2oaD).
27 L
then the desired function is the solu(’zlon of the equation
®  a) - ” KDu@ a5 = -12,
5

a non-homogeneous, mtegral equation of the second kind.
In the exterlanroblem, the condition to be satisfied is

(6) ¢ %y = f.
Using aganjl,the assumptlon {2), with P now understood to be
an exterior;pbint we obtain

A9 = u(s) + 2ru(s), or u(s)+“(jj L

2r

" /50 that we need to solve the integral equation
Voo e+ | [ke ouees =42
' 3

In the interior Neumann problem, we must satisfy the
boundary condition

#5ee Chapter V, Art. 5, Equation (17), the notation 4 for the surface
point is changed to s.
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® c?—’i:ﬂf

where it is necessary that the function f satisfy the condition S

() J 7dS = 0.
§ R4
Here we [ot ' &
(10) w(P) = ”?ﬁ “_’?’5 F.
s 7 " m\‘ DU

iLe., assume that u can be represented as the potentlal of a .-
surface distribution of mass of density o. NOW (see Chapter v,
Art. 6, equation (21*)) R o

*%®+ﬁﬂ»GLS

¥

or

(11) am+ﬁMQm>ﬁfm o
Evidently |
(4*) \% K(Q 5} = 1 1 coslrn 7)

\ rés

to K(s, 0y of f‘l’)

is th ernel
s the Qﬁs\oaated or trams*»potﬂBd k w;th the boundarY

Eer the exterior Neumann problem,
C?Rdrtlon
\(12) %’%}' = f,
1t ral
We use again the assumption (10) and obtam the ‘in 88. |
equation _ )

f(
(13) a(s) — J K(Q. s)cr(Q)dS =
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Evidently the integral equations (11) and (13) are the associ-
ated or transposed equations corresponding to (7) and (5}
respectively. :

We can combine the integral equations for the first boun-
dary problem in the form
¢

(1) o) = [ K6, Ouos =g

s W

Here X is 1 for the interior problem and —1 fgrf'fhc‘"exterior
problem, and g(s) is —f(s)/2n and f(s)/2x {esjae\ctively.
Similarly, the solution for the second boundary problem

' is found by solving the integral equationy '

RS
(In) a(s) — )\'” K{Q, 5)afQ)dS = g(s)
5 . »."“ N
with A equal to —1 and 1 regpééﬁvely for the inner and outer
problems , and g(s) equal toyf{s) /27 and —f(s}/2 respectively.
The normal is assumed to.be the outward normal on the closed
surface or surfaces %ifpevery case,
For the interioéth'ird boundary value prablem, we have

\J du_ k
14} s ——— —#_=7,
(14) ) O\ an t k f

where welsippose that the function 2 does not vanish on S.

We ‘rkake again the assumption (10) used in the Neumann
problem, and find

"
N

B cos(r,mg) , A 1 _
v + ~k—u_-— 2wo(s) +JJG’(Q) {—T + n T}ds Fish

or using the kernel

1 {cos{r,n.} ., A(Q) 1}
15 el Suiutib LI GO PR, il A
(15) 2#{ 2 EQ) r0 Hs Q).

the resulting integral equation is
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(16) als) + j Jﬂ(s, 0)o(0)dS _—.fé@ )
) T
For (he exterior third boundary value problem, we have ~
au+ .
17 5 =5 N o
( ) an + ﬂ+ f | ) \."I\ .

and the resulting integral equation

(18) 7(s) ~ J Hs, 0 )a(Q)d.S‘-—ﬂs)

for the density ¢ to be used in (10). 50 L
The kernel K (s, Q) of (1) becomeS\{nﬁnlte as Q*S! a,nd m '

ince L0 =
fact becomes infinite like I/rg,, since ”‘9 remams_

bounded on account of the eontmuous curvature of S Smce_\

K becomes infinite like 1/?, it may be showa that the. thlrd-:".:'_'
iterated kernel K(s, ) ‘remains bounded for alt points;s.and L
Qof S, cven when thdy coincide (see Art. 4). Hence: the Fred- -
holm theorems, can be applied to (I) and also to-{I1).- The C
kernel 7i(s, o likewise becomes infinite like 1/7. Whﬂﬂ Q +5:. B

so that L”(s‘Q) is also bounded L

Art, 8\ The Existence Theorems - o
‘ We can now prove: ke Dirichlel prabiem ﬁrr t}w mt&rwr_ _

=~ fms always a unique solution. That not more than :rze i‘l’::é:ﬁ ; '_ g
\ } €Xists ig already known, from Chapter VIL Now, us equ' ion -
that a solution actually exists. The homogeneﬂ AR

Corresponding to (5) is |
(19) p(s) — JJp(Q)K(s, Q)dS =0 .. o
al @l@ti‘q’;}:ﬂ};_‘. "_'

It s sufficient to show that this has only thE ww
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for then by the Fredholm theorems, (5) must have a solution,
and only one. Now let & be a solution of (19). Form the
potential function % due to the double layer g,

a= Hg“___"s(’: ") ;

¥

, A\
then #_ = 0, because & satisfies (19), and consequently 3=0
identically in ¥ on account of the uniqueness theorem §qr'the

Dirichlet problem. Hence q:—‘ on S vanishes, aI{d; \therefore
- n "‘.

‘%‘“: — 0 (Chapter V; Art. 7). But from thiguit-follows that
% \

4 = 0 in the space outside S, from th(ﬁﬁr\lidueness theorem
for the exterior Neumann problem.'a,‘fence .= 0 for all
points of S. Hence finally RO

B(s) = & (s 4.) =0,
41r~j..’

which completes the prosf’

Hence 1 isnot an eigﬁ}l-va!ue of (I). Accordingly, it is also
not an eigen-valug of the transposed equation (11), so that we
also see immediately:

The Neumatn problem for the exterior of S always has @
unique solulion.

The &xterior Dirichlet problem, which is of a more com-
plicgtp& nature, will be considered in the next article.

~We now consider the interior Neumann problem. We will
\m show that the condition (8), which we know to be necessary,
{s also sufficient for the existence of a solution. It has -already
been seen that the solution, if it exists, is unique except for an
arbitrary added constant (Chapter VII). The homogeneous
equation corresponding to (11) is

1At fiest it follows that @ = constant, but since @ = 0 at infinity, we
get in fact #=0.
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(20) (s} + ” K(Q, 5(Q)dS = 0.

The transposed or associated equation, which is the homo-
geneous form of (7), is

(20%) i+ [k, 0r@as =0 (O
AN/
5 AW
The equation (20*) certainly has a non-trivial solution,
(21) B=1, o\
since from Chagpter V, Art. 5, ' ‘
N
J:[ Cos(’@sn ”‘O) d S '\_,‘2.‘1-

% 3

holds identically for all points s of S. We now assert that R

(20%) has no other solution ngta constant.
trary solution of (20*), addh form the correspondmg POtE“'

tial gz, '
2 [ [ - cos(r, 5o} s, .
\{3.:—* jjﬂ. —-“"—"'""rg . '

X 20(s) +” () 2 7o) °°‘”’(" ”")ds o

The hﬁh‘nomc function %, bemg the potentral of a double drs-

“tribution, has the mass 0.
.»\GXfertor Dirichlet problem for § with t
\Value 0 on S, and hence 4 = 0 in the entire exteri 1. Therefore B
the uniqueness theorem of Chapter: VIL: Ar;ﬁ ‘0. S
& —==goverS
aﬁ 0 over the ent‘u-e surface S al'ld heﬂce an 0 Ov .
% )
for he
also. Since the solution of the Neumann pn;bi:l;ust bza ;
interior is unique to within an add‘t“’e constant,

then

he mass O and the °

Let ji be an arbi-- -

It is therefore the solution-of the .-

OF Spﬂce: fmm s
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constant inside S, so that 4_ is a constant on approaching S
. ' _ 1, _
from the interior. Hence finally, (s} = . {#y— @#-) = con-
™
stant, as we wished to prove.

From the Fredholm theorems, it follows that the nop-
homogeneous equation (11) has a solution o, because fand
hence also f/2x is orthogonal to the only solution (a constant)
of the transposed or associated homogeneous equgti‘oﬁ {20%),
this being the condition (9) imposed on f. Usin this solution
¢ in (10), we obtain the solution = of the interior Neumann
problem. (The solution o of (11) is, moreQver, only deter-
mined to within an additive constant, %écause (20*} has a
constant as a solution.) Hence wedye the theorem: The
Neumann problem for the interior of (Shas ¢ solution satisfying
g~ _ fif and only if JJ faS =y 0: the solution is uniguely deler-

on
AS AN

~

mined except for an additive consiant.

From the above, itis evident that —1 is an eigen-value of

(1) and hence also'of. (11).

We have reduged the third boundary value problem to the
integral equafions (16) or (18). The Fredholm theorems
thereforgééaﬁ to the following results: Either the boundary

wah{egp\\;éb’lem with the boundary condition %f: -+ % w_=fhasa
A\ n
. atque solution, or the corresponding homogeneous problem with
NVthe boundary condition %“: + %u_= 0 has a finite number of
7

linearly independent solutions. 1In the last case, the non-
homogeneous problem has in general no solution ; it has a
solution if and only if f satisfies certain orthogonality condi-

tions, and then the solution is no longer unique. Entirely
analogous results held for the exterior problem.
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In the case of the heat conductlon problem, where% >0

always, it has already been shown (Chapter VII, Arts. 2, 3)_

that the humogeneous probiem has no (non-trivial) solution;

Hence it follows that: The heat conduction problems: with, . .

Newlon's law of cooling has always a unique solution. . . .
2SN

Art. 3. The First Boundary Value Problem for the Exterior

We will assume at first that the surface S is-a siggle'closed
surface; later the general case will be conmda(ed To"the © _
preceding article, it was shown that A = —1Ligah eigen- -value. R
of the kernel K(s, @), and that the hongeneOlls equation: "
(20%) has only the solution = 1 (to within a multiplicative . -
constant}. Accordingly, by the Fradholm theorems; (20) has *
~ only one solution 7 (to w:thm a constant factor) FD'-'“‘ the.-

- potential
(22) U{ P) -.‘:J (Q) dS

\ - . . .
due to the surfager distribution of mass of densrty ; On L
approaching S fsonithe interior, the nm-malderlvatwé takeson R
the limiting valte e R

:~\ { S . | [
N \if:—zw(s) +J J (Q) ("")ds =0

because 7 is a solution of (20).
3

points of .5, and since the solution for t
for the interior is unique to within 2
follows that ¥/ must bea constant m t
(23) U=Con S and in._ V S

aU_
Therefore i

he Ne
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If S is an insulated electrical conductor which is given an
electrical charge, then after equilibrium is reached the elec-
trical potential is constant on S and in Vi, The equation (23)
is therefore characteristic for the pofential of an electrosiatic
conductor. Hence (22) can be considered to be the potentidl
due to a charge on a conductor, with@ representing the density
of electricity on S. This density, from the above discussiort,
is a solution of (20), and hence an eigen-function for the Kernel
K(Q, 5). Since the solution # has a constant fa;:tor" at our
disposal, we have at hand immediately the ansufe? to the fol-
lowing questions: g

a) What is the electrical charge density which creates
the potential 1 on the conductor S\
Since the above density & credtes the potential C, the

desired density is —E— .

b) The total charg& E is placed on the conductor S.
How does the chafge distribute itself, or what is the
density functiogi?',\ .

For any patticular charge density @, the total charge is

E, = ||adSv “Then g—E is the desired density, because
S 1

#

\O" H-iE—EdS = E.

O\ 3 Ey

N We now return to the discussion of the Dirichlet problem.
\8tilt using the assumed form of solution (2), we are led to the
equation (7). This non-homogeneous integral equation has a

solution only if f is orthogonal to 7, that is, if .” f(s)a(s)dS=0,
' s
which is not in general the case with an arbitrary function I

In fact, the potential for the exterior region V. cannoct in
general be expressed as the potential of a double layer. We



Art. 3 FXTERIOR DIRICHLET PROBLEM -~ = Dy

will now sec that it is the sum of the potential of a dbub’lé' -
_ layer, a potential due to an electrostatic conductor, and a
constant, The equation :

(T uls) + J J K (s, Qu(@ds == (C = constant)

has a solution if and only if

” (fls) = O3S =0, ¢+
”f&ds Ny

”&d.s O

AN

let 4 be a solution. Then
:' ] ) ’
(25) L ”' cos{r, # s
\ ¢ r

s a regular harmomc function, which satlsﬁes the boundary
condition WS, flsy~— Con approachmg S from th
l'eglon "\ ) s

Let be the potential which corresan
tl‘lca] ‘tharge on a conducting surface S,

\(26) Jj 45, with J]ad.é ==:. .

Uis evidently uniquely determlﬂed bY S
U, let

(27) U=b(= constant)'on &)
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Then MU has the mass M and takes on S the constant value
Mb. The function

(28) w=W+ MU

is therefore harmonic in the exterior V., has the required .
properties of regularity and has the prescribed mass M\

Moreover, on approaching S, 5.
'S\
Wy = W++ iWU+=f($) - C + Mb. A D
Hence A0
(29) w=W+ MU+ C— Mb

m\\.
is the solution of the problem. v .
The generalization to the case whe '\S is composed of

several separated surfaces Sy, Sy, . . ~,~~§,.."is now not difficult.
The homogeneous equation o \4

N/

20" a0 + || Ko Dm@as =0

now has the solutions

-

_ 1 00(Sk

0 = 2

(3 ) Hk(S) {QBI}S;, ,Sk-—l; Sk.H, ,Sm
=123, ..., m).
AN/

Thesemeolutions are evidently tinearly independent. We
will shawythat there are not more than m linearly independent

solyt s of (20%). Let j be an arbitrary solution. Form the
QQf;'ésponding potential of a double layer

\»\} J 2= J"[ﬁcos (:, ) 4s:

r
§
then from (20*) the equation

o= 2(s) + H 30 n ) 45— g
?'2
A3



¢ an arbitrary system of linearly in_d.e'
) Form the corresponding potentials

Art. 3 CASE OF SEVERAL SURFACES - 1299

holds over the entire surface S. The harm’cmic.functioﬁ # i3
thercfore a solution of the exterior Dirichlet: problem with the
mass 0 and the boundary value #,=0. -From the uniqueness - .

theorem, # = 0 in V.. Hence %i' =1{ everywhere'_ori-s, A
% _ TR

and hence %&: = O also. By the Neumann interior problem\

O

uniqueness theorem, @ is constant in the interior of.gach of

the surfaces Sy. Hence .- is constant over each of t\'he surfaces
1

S,. Hence, finally, it follows that p(s) = — (ﬁ;}— ﬂ_)ls con-
N T L

stant on cach of the surfaces Sg;if these cohstants are €y :Fz; '—_.'. SR
¢m, then cvidently g can be written‘il’l'fhe form S
B = gt Cs#gﬂ?’i-'f- ~+ ﬂm#{n;, .-

or is linearly dependent onthe functions jx, 25 We Wished.t?_: o

prove, L
Now, by the Fredhqi"m theorems, the homogeneous equation -
, ii 3 . ' -
(20) o+ H K(Q, 9535 = 0.

has likewige,m linearly independent solutions__a:_nd_' no more
B By (B
\y pendent '_c__,#oluti"o_ns. o

(32)  UuP) = HELE;Q_)ds, R R TINLL -

then the normal derivatives satisfy the cop 11:1_0I1.1.s e o
1 are constantinside .

because the 7 are solutions of (20); the [/ are cONSLATE B
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S and hence on S. The potentials I/; are therefore constant
inside and on each of the surfaces Sy, or are potentials due to
static charges on conductors Si. The Uy are Hnearly inde-
pendent. For, if a relation 6;U1+. . . .-+ b Un= 0 existed be-

tween them, then from the relations 4ro; = (@) — (6 U") \

. an /- I+
it would follow that the same relation b7+, . . +bsen=0
exists between the #;; but these functions are lmeariy inde-
pendent.

Every combination \\
33) U = alit. .- +onln)

is likewise constant on each of the su‘r«faces Sy, and is hence
the same as an electrostatic potentlal due to charged con-
ductors. Evidently

(33% 0 =H(_Q) as,
N & ¥
where <"
(34) g <”= a1+ . .o CpFm}

and 7 is also a selution of (20). The equation (33), with arbi-
trary constast coefficients, gives the most general potential
due to ch&(ged conductors .5;.

e/now consider the problem of finding that conductor
potential I which takes on prescribed values Cy, Cy, . , Cn
on' the corresponding surfaces. Let

\ (35) U= const. = ¢ in Vi+ Sy,
where V; is the interior of Si; i.e

¢ in V45,

Dy= | G0 Vet Sy 0 m)

Chm 1N Vet S
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Assuming U in the form (83), we ﬁnd for the ax the m hnear

non-homogeneous equations P ot
agicut ent. oot Gmimi = Cy, R )
ae aacu+. .. tmg= L2, -

(36) et @t . o Gty 2 N
@16t Gt ot mbmm= G

The determinant {Cra] of the coefficients is not zero, since "the

potentials Uy, Us, ..., Uy, are linearly mdependent Hence -

the constants a,, @y, . . . , Gy are uniquely determmed andhence

U is likewise uniquely determined. Naturallyﬁ‘he electncal:

dens:ty r of U is also uniquely determined by(34) The problern -

is thus solved. o\ o
We now solve the following problem,\Charges Ey, Eg,

E,, are placed on the conducting surfaeesSy, Sz, - - - , Sme’ Wha:t._ -

is the potential 7 produced by them, and what s the denmty .r.? L
The desired density r must. satisfy the equatlons |

37 JerS BN =1,2,...0m).
By using (34), we ggnn obtain m hnearly mdependent nlci:; 3
homogeneous equatlons for the constants 61, 85, . +».s “n:t .
(38) ¢ s:\ 2 u’k-- Fxi on Sh .
that is, 0 R
N on Sy, : _
\ N\ oy = le O 1 (k = I, 2,. -'--.n m); '
\ . Frm 0N Sm ’

' B
\(the functions ¢,, are naturally not constants) thfm the o
equations (37) take the form ' - ' oo
dS = B, b

@7 al”ahds + a,”ﬁ,ds oot amﬂw ¥

S 5
’ (fﬁlztk ’__)'
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The non-homogeneous equations (37} or (37*) have a unique
solution for the constants a1, @a, - - . , Gm, since the correspond-
ing homogeneous equations have no (non-trivial) solution.
For, if a solution of the homogeneous equations existed, this
would lead to a potential U, not identically zero, produced by
zero charges E,= 0 on all the conductors, which is evidently

impossible.  (That this is impossible follows in a purcly

mathematical way from the Green's formula (30} in Cha§ptcr
111, Art. 6.) Since the a4 are uniquely determmed,,;t jollcms
that v and T are uniquely determined, and thg problem is
solved. N

We now return to the solution of the Ditichlet problem.
The equation (7) of Art. 1 has, for an arblt}ﬁlry function f, no
solution. On the other hand, the equaf}ori

@) wo+ ][ K6, 0ui@s =4 (= s = cain = =i

A 2
§ A\
has a solution, if the constanfs €1, Car - « - 5 Cm are determined
so that the right member s orthogonal to all the m solutions
Tiy O3 - - - 5 7m Of the hornogeneous equation (20). We must
therefore determme\ﬁie €1, €2y - - - » Cm to satisfy the m equations
’\J‘:J:{f - Clﬁl—. . .—Cmﬁm] T S = 0
P8

or -
O

(3?) €1 .Hl_il redS + co -H HeordS 4. .t em JJ Hm T dS
\d s s s
=JJfEde, (k=1,2,...,m).

S
The determinant of the coefficients of (39) is the same as that

of (37%), as may be seen by noting equations {30} and (38).
This determinant therefore is not zero, and the ¢, are uniguely
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determined.  With a solution x of (7,), form the potential of
a doubic layer o

{40) W = jjﬂcosfr, ﬂ) das. .
3 _ RS
It has the mass zero, and the boundary value: \‘\ '_
We=f-eali——omin O

because u satisfies the equation (7,). AN _
We have already solved the problem of ﬁndmg the oon-' L
ductor potential which takes on the presoribed - valuss -
Cy Coy..., Cm on the corresponding surfates. We:now O
designate hy U, (8 = 1,2,..., m) thatibiquely determined-. - - "
potentiul which takes on the value lon w and vanishesonall - -
the other surfaces. By (30), this i equiivalent with the condi- . . -
tion (I}, = jy. Let M, dealgnaté the mass of the potentlal
Ur. Then we put the desweduof the Dmchlet problem in the

form RS
-

@y u= W+Pgi7}+PsUz+ +paf.ﬁm+c. L

where the py, pos. N , Dm and ¢ are constants... “They: must be.l R
determined 50, that uy = f and the mass of u s eqilaI to: the
prescribed JI Hence : o A

(42) “d-\“\f‘-ﬁm e = Cmiim -H-’z,uz+ +Pm#m+ -Lf_
and < *\ - o
RON PrMy A pedy +pmMm '8
\F rom (42) it follows that everywhere on'S, . B
r—c)m+.. +(Pm'—€"M)ﬂm+5_0'

or by considering (30), ) R
oy

pr—cte=0, (k= 1’2’ A
or ’
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(44) Plr_-cl_c’Ps'_-Cﬁ_g’---;pm=cm“"'6.
Hence

(61—C)M1+(Cz—"€)M3+...-’r‘(ﬁm-"C)Mm = M,
so that
(45) c=€1M1+GnM2+-—-+CmMm“M_

M1+M2+...+Mm 7 AN

Since the c1, 63, . .+ , &m were already fixed by (39), it is ea\fident
that ¢ is determined by (45) and then the p by {44). Our
problem is therefore solved. The solution is agaifi'the sum of
the potential of a double distribution, a potential due to
charges on insulated conducting surfaces agid'a constant.

If the Dirichlet problem for the ext {aris put in the second
simpler form (Chapter VII, Art. 3) sthe solution is of the form

(46) w=W-+eal AN L+ U

Since evidently « fulfils the~téquirements of regularity and
continuity, and N

Uy =f - Clﬁl '_“‘\ - Cmﬁm + clﬁl + P +Cmﬁm=fu

the solution is ang'}v\miguely determined. For, if 14 be a second
solution it must\lave the form #e= Wi+ Us, where W, is the
potential of'a double layer and Us is the potential of a simple
distribqt@é}k “over S. Let Us; have the mass N;. Now
6151:&{:.’—1—5,,.1’7,,, has the mass ¢;: M1+ ceMet ... F enMa=N.

L0 N = —
Thieh We+ Us — T\; e +...+cnln)
¢ .

N has the mass zero and takes on the boundary value

N. - -
b _-I;TE (cip1 =+« - + Conktm)-

However, from the uniqueness theorem of Chapter V11, Art. 3,
there is only one function of the form w + const., where w is
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harmonic and regular in V,, which has the mass zero and the
above boundary value. This is S
Wt ot b onlon =2 (@l nia):
Accordingly .
N — -
Wa+ Uy — A—} @O+ +onln)

§W+(1 —y—“?) (ciir 4. ..+ calin).
N NN
From this it follows that

L ,  ordias
N

Y
v

O
3

and that g

Wa=1W, and Uz_.%}‘(él Oit...+ealDm)=0"
or Uy =Q§i71 Fooiotonlm
which we wished td,prove. T .

The solutiopngiven in Chapter IX,. Art. -.lv-__f" 5 eiﬁi{: .
boundary valile“problem for the exterior of the. sp er?, thy
means of ,the" Poisson integral, is evident.ly.,the Sumd:’ _ e-;
potentiahgha double layer and of the potential duc toa char
COrl(.iy&ti'r. and from the above results 1:1'1155‘31"1"I 4

-~ "*ft 4. Boundedness of the Third Iterted emel

A% To complete our proofs, we still have '?‘3_1{

assertion made above that the third 1t_mte€_1__-.‘ :
bounded. e

For this purpose, we will first prove an au;:ﬁfy

Let T be a bounded plane region, s andli?_liofs FN

g(s, w) be a function such that for a“-PO’..n_-s e

oren
”
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G (s, w) ’
?ow

g(s,w) =

where 7., is the distance from s to w, and 0 < a < 2, and
where G(s, ) is bounded for all points s, w, or |G(s, )| < M.

N\
Likewise, let
1 H , ~
b = F52), &’
s e \
where 0 < 8 < 2, | H(s, )] < M. N

Let "‘

£(5,%) = ”g (5, 1) B (w1, w) 4y, = ”MM S
T T

f.?‘lﬁ'l A
. : 7\
we will investigate the behaviour of f(snie) when w » s.

N4

It is known that the integral O

£
R

D
where 7 is the distance olghe point {x, y) from the origin, has
a definite value for « g“2\even when the origin liesin 7. This
is proved easily by %@tﬁb’ducing polar coordinates, so that

J J dxdy J J‘ drdé
"\ a - a—1"*
£ ) ¥ r
O

and the\Q(”I\)b'nent a —1 <1
F“rp% this it follows that f(s, 2) is bounded as long as w
remaifis at a finjte distance from s.
“\“When w approaches indefinitely near to s, the integral
\f(s, w) still remains bounded if &« + 8 — 2 < 0,
because the integral

J.J G(su wl)H('w‘h 'w) s,

=+ 8
?-S i

" still has a value.
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However, it is different when « ¥p-2= OWeclalm ’
that in the case &« +8 — 2> 0, the function”
o F 8- 2(s, w)= F(s, w)
remains bounded, and therefore that f(s, w) may bf:cbm_e_iﬁﬁﬁite )
of the orler a + 8 — 2 with respect 0 1/7sur and . that for
o+ 8 — 2 =0, f(s, w) may become infinite like log(1/7): <
To prove this, consider s as fixed and as the-centre ofa
circle of vudius 27,,; let Ty be the interior of this citcle,:and -
T, be the remainder of the region 7. Then “.;\

o= ffooe [ o

Ty '\Ts

As lony o6 the integration point wilies T’y the.quotl
g g point @hlies in Ty the.quoy
Yuww - . ™Y : o Puwr e
Few iy heuween two positiveibounds, 0.<.a < ol = < b;80
fawi N N . a.ﬂ'r;__ S

thatone can replace 75w, b

P ,ml, or vice versa, :i_n émy iriequali
Hence { RN
H J Gls @H @) 45| o J J'ﬂ
. — ||
1= O Fsun Tow, & oy Tomy
Introducing™\polar coordinates with' s a8 h: ole,
o+ =250 L
QoS R & ﬂ[. —
’I‘f a+ 8 < 2WJ2rm ru+ﬂ_l (a +.8 _2) a+ B

3 oy 4 '\’. T: Fan
\where R is large enough so that Ts lies mthe '
Hence Py

Tx

dr aog
Fora +8—-2=0 sinceJ--’;,L =log ._f.’;;_
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integral '” g(s, wh(w, w)dS.,, may become infinite like

T:
log (1/75w).
For the other integral,

-” g(s, w)h(wy, w) S,

1

< M H NN §
T 7:101 rﬁuw . \\ ’

We introduce a similarity transformation which enlhrges T
to the unit circle. If for brevity 27, = &, then. clghotmg the
points in the new coordinate system by bars, we have

Fouy = krﬁ1 y Yonw = krm_w ' dsw»’f%?;igw_l
and N\

 §

” dS, _ 1 .J':J‘.."xdg
1 T P k“+ﬂ_2” e 2

Lnity UM
circle

The integral on the right has a value independent of the ﬁosi-
tion of the points s and e, and consequently remains fixed

when w & s, Hence\{br’a 48 —-2>0

IES ol ) .= (emms) -0 (r:;,, )

T
'\
and for\Q-} B8 — 2 = 0, the integral JJ . . remains bounded.

T
..’I" his completes the proof.

m' he theorem just proved remains valid if the plane
reglon T is replaced by a curved surface S, which has contin-
wous curvature, as for example the surface S used in the
boundary value problems. For we may think of the tangent
plane being drawn at the point s of S, and separate S into a
small region S’ about this point with 5’ being the remainder
of the surface; then project S’ on this tangent plane to form
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the region T there. There is then a one-to-one correspondenc'e'_-
between points of S’ and of T. The ratio of the distance 7au -
of a point wof §’ from s, to the corresponding distance between, ©
the corresponding points in the tangent plane, is bounded away .
from zero (on account of the continuous curvature of the .
surface S), and this is also true for corresponding elements of

integration. Hence we have fi,st . PR\
-' . . ‘1‘: N\ -
” wo=0 (r“ +18 — 2) + and from this tl{at H ... =0 (?’;@*:aﬁ)’
_ while the remaining part of the integral g Ve fef_lll_aiﬂﬁ':
i bounded, so that finally . x\ . o :
g Ny s .

™

whena +8 —2> 0. }.n‘ﬂié case o + 8 — 2 =0, theinteg=

rals ” ... and ﬁ\n,all)\r ” ..., may become lpgarit:hmi:(:a_l:\ly o
) : .

infinite as w -}.;:' o S
Havin 1(f,o\mpleted this auxilia,r)_z theorem; We wﬁl-have no
difﬁclﬁy\'.in proving that K*(s, Qs -bgunded.-_ -
First consider '

-
\V $

Since we can set

A K(s, Q) = ”K(s, w)K (. Q) dSu o

ko0 =S

unction, we have

; where G(s5, Q) is 2 bounded f |
! a.=1,ﬁ=]_;a_+;3.-—.2_'-'—=..q.'__.
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Hence K2(s, () becomes at most logarithmically infinite as
Q> 5. Then, since .

K3(s, Q) = IJ K(s, w)K2(w, Q) dS.,
S ) . &N\

we have in this case that o = 1 while 8 can be an arbitrarily '
small positive constant. Hence, since a + 8 — 2 <, \the
kernel K3(s, Q) remains bounded for all points s andy

.

>
Exercises: &

Formulate the boundary wvalue problen@ Jogarithmic
potential.

Prove the uniqueness theorems. ¢ :}‘

Reduce the problems to integraly &quations.

Prove the existence theorems., \J

L
©
A
SO
PN\
O
%



INDEX

Analytic function, 173 Gauss's theorem, 48 -

Boundiry value problems, 180 Gradient, definition, 23 )
exterior problems, 185 | Gravity, constant, 7,
reduction to integral equations, Newtonjan law, 7 - AN\

287 Green's formufas, 63, 69 « N\
unigueness, 183 Green's funiction N

Calculus of variations, 187 for the circle, 231 D
direct methods, 191 in space, 247 .m}_\

Cauchy-Kicmann equations, 170 in the plane, 324

Circle, expansion in, 196 second kind; 283"

Conformal mapping and Green's Hadamard's.f]@arem, 28t
function, 235 . Harmonig functions, 39

Continnation of harmonic function, regiilar*at infinity, 40,

220 , répcesentation as a potential, 67

Coutoml's law, 8 Hirnack's theorem, 216, 247
Curl, definition, 23 o “Hlder condition, 2?9 o
Dirichlet Principle, 187 3| Inequalities, Bessel's and
Schwarz's, 201

Dirichiet Problem, 180 "4 rarz’
Divergence, definition, 24 (" Integrai equations, 259
theorem, 48 \\ e Ke1:nel, 259
Double layer, 28 X iterated, 280
Eigen-values, 2769 unbc:unded, 28332
Equipotentials, @andlyticity, 214 Laplace's equation,
Legendre

Equipotcntiailﬁtffaces, 42

: “ ;ated functions, 101
Existencéthgorems, 291 associate ) _
Expanss";}s\fn Legendre differential equation, 98 4. 99
Polynomials, 257 function of the mD“d.k;?e ’
A & ; a
_Efpansion in surface spherical functions, complex vart
\ ™ . . treatment, 123
}  harmonics, 251 1. mials, 83
arce ' Legendre poly_n o 257 !
on in.
conservative field, 20 g’g;nséo;;llity 102
field due to a point mass, 9 o formulas, 91
field of a spherical shetl, e ;é Ma::ci;lfrj harmonic function, 40
rface, .
e e s 1| L
! hegrem, /0
Fourier's series, 200 Meantv:]ue theorem, 74
Fredholm theory, 259 -
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Neumann problem, 180
Newton’s law of cooling, 182
Orthogonality, 102
Poisson equation, 132
Poisson integral in space, 245
Poisson integral in the plane, 193
Potential, 19
analytic character, 77
behaviour at infinity, 33
conjugate potential, 167
continuity, 130
continuity for surface
distribution, 1356
Dirichliet’s characteristic
properties, 156
discontinuity at a double
layer, 136
divergence theorem, 54

~

energy, 22 A\

*
expansion at infinity, 115N
expansion in spherical 3

harmonics, 92, 25(}<
&

N
L
g

£

\'\\./

INDEX

invariance under conformal
mapping, 177
logarithmic, 26
normat derivative, 140, 145
of a body, 25
surface distribution and
double layers, 28 ("¢
where mass exists, 1260\ "/
Riemann mapping theorem, 242
Ring, expansion in £ireplar, 209
Solencida! field, 52y °
Spherical ha{m?n?és. 39
addition Yheorem, 109
in rect@ngular coordinates, 95
- rfqtée spherical harmonics, 97
Spokes theorem, 58
8treim-line, 17

N

1 Tube of force, 55
A

“Vector, 1
cross or vector product, §
dot or scalar product, 4

field of vectors, 15
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